期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于双路注意力机制的习题推荐模型研究
1
作者 聂庭焜 刘梦赤 《中文信息学报》 CSCD 北大核心 2023年第7期152-161,共10页
习题推荐是利用推荐算法将习题推荐给学生的任务,点击率(CTR)预测则是推荐领域的主流研究方向之一,现有的大部分习题推荐模型没有重视注意力机制的创新,因而落后于CTR预测领域。为了研究CTR预测模型中注意力机制在教育领域的应用前景,... 习题推荐是利用推荐算法将习题推荐给学生的任务,点击率(CTR)预测则是推荐领域的主流研究方向之一,现有的大部分习题推荐模型没有重视注意力机制的创新,因而落后于CTR预测领域。为了研究CTR预测模型中注意力机制在教育领域的应用前景,该文提出一种分层次学习注意力权重的双路注意力推荐模型(SEFM)。该模型通过因子分解机(FM)与压缩激励注意力网络(SENET)两个注意力机制的并行运行,实现学习特征之间的关系以及特征本身的权重,从而完成推荐。在两个CTR广告数据集与一个教育数据集上的实验表明,SEFM能准确地学习特征在多种维度上的权重,在两个评价指标上的表现均优于现有的先进基准模型。 展开更多
关键词 推荐系统 点击率预测 习题推荐 个性化学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部