期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于双路注意力机制的习题推荐模型研究
1
作者
聂庭焜
刘梦赤
《中文信息学报》
CSCD
北大核心
2023年第7期152-161,共10页
习题推荐是利用推荐算法将习题推荐给学生的任务,点击率(CTR)预测则是推荐领域的主流研究方向之一,现有的大部分习题推荐模型没有重视注意力机制的创新,因而落后于CTR预测领域。为了研究CTR预测模型中注意力机制在教育领域的应用前景,...
习题推荐是利用推荐算法将习题推荐给学生的任务,点击率(CTR)预测则是推荐领域的主流研究方向之一,现有的大部分习题推荐模型没有重视注意力机制的创新,因而落后于CTR预测领域。为了研究CTR预测模型中注意力机制在教育领域的应用前景,该文提出一种分层次学习注意力权重的双路注意力推荐模型(SEFM)。该模型通过因子分解机(FM)与压缩激励注意力网络(SENET)两个注意力机制的并行运行,实现学习特征之间的关系以及特征本身的权重,从而完成推荐。在两个CTR广告数据集与一个教育数据集上的实验表明,SEFM能准确地学习特征在多种维度上的权重,在两个评价指标上的表现均优于现有的先进基准模型。
展开更多
关键词
推荐系统
点击率预测
习题推荐
个性化学习
在线阅读
下载PDF
职称材料
题名
基于双路注意力机制的习题推荐模型研究
1
作者
聂庭焜
刘梦赤
机构
华南师范大学计算机学院广州市大数据智能教育重点实验室
出处
《中文信息学报》
CSCD
北大核心
2023年第7期152-161,共10页
基金
国家自然科学基金(61672389)
广州市大数据智能教育重点实验室(201905010009)。
文摘
习题推荐是利用推荐算法将习题推荐给学生的任务,点击率(CTR)预测则是推荐领域的主流研究方向之一,现有的大部分习题推荐模型没有重视注意力机制的创新,因而落后于CTR预测领域。为了研究CTR预测模型中注意力机制在教育领域的应用前景,该文提出一种分层次学习注意力权重的双路注意力推荐模型(SEFM)。该模型通过因子分解机(FM)与压缩激励注意力网络(SENET)两个注意力机制的并行运行,实现学习特征之间的关系以及特征本身的权重,从而完成推荐。在两个CTR广告数据集与一个教育数据集上的实验表明,SEFM能准确地学习特征在多种维度上的权重,在两个评价指标上的表现均优于现有的先进基准模型。
关键词
推荐系统
点击率预测
习题推荐
个性化学习
Keywords
recommendation system
CTR prediction
question recommendation
personalized learning
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于双路注意力机制的习题推荐模型研究
聂庭焜
刘梦赤
《中文信息学报》
CSCD
北大核心
2023
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部