密集场景下群株生菜的有效分割与参数获取是植物工厂生长监测中的关键环节。针对群株生菜中个体生菜鲜质量提取问题,该研究提出一种利用实例分割模型提取个体生菜点云,再以深度学习点云算法预测个体鲜质量的方法。该方法以群株生菜为研...密集场景下群株生菜的有效分割与参数获取是植物工厂生长监测中的关键环节。针对群株生菜中个体生菜鲜质量提取问题,该研究提出一种利用实例分割模型提取个体生菜点云,再以深度学习点云算法预测个体鲜质量的方法。该方法以群株生菜为研究对象,利用深度相机采集群株生菜俯视点云,将预处理后的点云数据输入实例分割模型Mask3D中训练,实现背景与生菜个体的实例分割,之后使用鲜质量预测网络预测个体生菜鲜质量。试验结果表明,该模型实现了个体生菜点云的分割提取,无多检和漏检的情况。当交并比(intersection over union,IoU)阈值为0.75时,群株生菜点云实例分割的精确度为0.924,高于其他实例分割模型;鲜质量预测网络实现了直接通过深度学习处理点云数据,预测个体生菜鲜质量的目的,预测结果的决定系数R2值为0.90,均方根误差值为12.42 g,优于从点云中提取特征量,再回归预测鲜质量的传统方法。研究结果表明该研究预测生菜鲜质量的精度较高,为利用俯视单面点云提取群株生菜中个体生菜表型参数提供了一种思路。展开更多
文摘密集场景下群株生菜的有效分割与参数获取是植物工厂生长监测中的关键环节。针对群株生菜中个体生菜鲜质量提取问题,该研究提出一种利用实例分割模型提取个体生菜点云,再以深度学习点云算法预测个体鲜质量的方法。该方法以群株生菜为研究对象,利用深度相机采集群株生菜俯视点云,将预处理后的点云数据输入实例分割模型Mask3D中训练,实现背景与生菜个体的实例分割,之后使用鲜质量预测网络预测个体生菜鲜质量。试验结果表明,该模型实现了个体生菜点云的分割提取,无多检和漏检的情况。当交并比(intersection over union,IoU)阈值为0.75时,群株生菜点云实例分割的精确度为0.924,高于其他实例分割模型;鲜质量预测网络实现了直接通过深度学习处理点云数据,预测个体生菜鲜质量的目的,预测结果的决定系数R2值为0.90,均方根误差值为12.42 g,优于从点云中提取特征量,再回归预测鲜质量的传统方法。研究结果表明该研究预测生菜鲜质量的精度较高,为利用俯视单面点云提取群株生菜中个体生菜表型参数提供了一种思路。
文摘【目的】解决复杂果园环境下的果实精准分割问题。【方法】本文提出一种新颖的柑橘果树三维重建与果实语义分割方法。首先,利用神经辐射场(Neural radiance field,NeRF)技术从多视角图像中学习果树的隐式三维表示,生成高质量的果树点云模型;然后,采用改进后的随机局部点云特征聚合网络(Random local point cloud feature aggregation network,RandLA-Net)对果树点云进行端到端的语义分割,准确提取出果实点云。对RandLA-Net进行针对性改进,在编码器层后增加双边增强模块,采用更适合果实点云分割任务的损失函数,并通过柑橘果树数据集对改进后的分割网络进行验证试验。【结果】所提出的方法能够有效地重建果树三维结构,改进后网络的平均交并比提高了2.64个百分点,果实的交并比提高了7.33个百分点,验证了该方法在智慧果园场景下的实用性。【结论】研究为实现果园智能化管理和自动化采摘提供了新的技术支撑。