期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于小波包分解和长短期记忆网络的短期电价预测 被引量:33
1
作者 刘达 雷自强 孙堃 《智慧电力》 北大核心 2020年第4期77-83,共7页
在电力市场环境下,精准的短期电价预测可以保障电网优化调度和安全稳定运行,但实时电价具有非平稳性和非线性的特点,加大了预测难度。针对这一问题,提出了一种基于小波包分解(WPD)和长短期记忆(LSTM)网络的短期实时电价预测方法。将实... 在电力市场环境下,精准的短期电价预测可以保障电网优化调度和安全稳定运行,但实时电价具有非平稳性和非线性的特点,加大了预测难度。针对这一问题,提出了一种基于小波包分解(WPD)和长短期记忆(LSTM)网络的短期实时电价预测方法。将实时电价序列分解,得到最高频细节部分和低频趋势部分,剔除波动性高、无效信息多的高频细节部分,再采用LSTM网络对有效信息最多、更能体现电价序列的趋势部分进行实时电价预测。使用所提方法对美国PJM市场某地区实时电价数据进行预测实验,结果表明所提方法相比随机森林、BP神经网络、支持向量机电价预测方和传统的LSTM网络电价预测方法具有更高预测精度。 展开更多
关键词 小波包分解 LSTM网络 短期电价预测 电力市场
在线阅读 下载PDF
基于CEEMD和模糊熵的随机森林风力发电功率预测 被引量:18
2
作者 孙堃 赵萌萌 +2 位作者 沈美娜 刘达 陈广娟 《智慧电力》 北大核心 2019年第10期36-43,共8页
提出一种基于完备总体经验模态分解(CEEMD)和模糊熵的随机森林(RF)风力发电功率预测模型。利用CEEMD将目标序列细分为若干子序列,放大输入变量波动对最终输出结果的影响。以模糊熵值大小作为重组的评判指标,将复杂程度相近的子序列重新... 提出一种基于完备总体经验模态分解(CEEMD)和模糊熵的随机森林(RF)风力发电功率预测模型。利用CEEMD将目标序列细分为若干子序列,放大输入变量波动对最终输出结果的影响。以模糊熵值大小作为重组的评判指标,将复杂程度相近的子序列重新组合成为若干新序列。再针对不同波动属性的序列建立随机森林模型并进行模型参数优化。实证分析表明推荐模型在选取数据集中具有更好的预测能力,从而验证了该方法在风力发电功率预测领域的可行性和有效性。 展开更多
关键词 随机森林 完备总体经验模态分解 模糊熵 风电预测
在线阅读 下载PDF
基于相似日和回声状态网络的光伏发电功率预测 被引量:16
3
作者 安鹏跃 孙堃 《智慧电力》 北大核心 2020年第8期38-43,共6页
光伏发电功率预测对提高光伏电站控制、调度性能以及保证电网的安全稳定运行具有重要意义。提出一种基于相似日和回声状态网络(ESN)的光伏发电功率预测模型。首先运用相关性分析法对光伏发电功率的影响因素进行了深入分析,并筛选出其主... 光伏发电功率预测对提高光伏电站控制、调度性能以及保证电网的安全稳定运行具有重要意义。提出一种基于相似日和回声状态网络(ESN)的光伏发电功率预测模型。首先运用相关性分析法对光伏发电功率的影响因素进行了深入分析,并筛选出其主要影响因素;再利用主要影响因素的历史气象信息建立气象特征向量,通过计算灰色关联度(GRA)寻找合适的相似日;最后运用ESN创建预测模型,利用相似日历史数据训练ESN,而后对预测日的输出功率进行逐时预测。算例表明,对比传统模型,GRA-ESN模型具有更高的预测精度和更好的可行性。 展开更多
关键词 光伏功率预测 相似日 灰色关联分析 回声状态网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部