为实现电力变压器运维知识的有效沉淀,以运维文本为研究对象,提出一种融合规则的电力变压器运维知识图谱深度构建框架.首先根据专家指导自顶向下构建知识图谱概念层;然后融合规则和深度神经网络模型抽取知识,构建知识图谱的数据层.针对...为实现电力变压器运维知识的有效沉淀,以运维文本为研究对象,提出一种融合规则的电力变压器运维知识图谱深度构建框架.首先根据专家指导自顶向下构建知识图谱概念层;然后融合规则和深度神经网络模型抽取知识,构建知识图谱的数据层.针对运维文本中的实体界限模糊和上下文信息利用不充分问题,提出一种通过扩展上下文信息和BERT(bidirectional encoder representations from transformers)获取扩展Span标签的方法,用于实体和关系抽取.算例分析表明,该方法在电力变压器运维数据集中知识抽取效果良好.展开更多
针对现有文本识别方法推理速度慢、模型参数量大的问题,提出一种改进单点定位模型(single-point scene text spotting,SPTS)的轻量级端到端文本识别方法。首先,引入PP-LCNet作为骨干网络进行特征提取;接着,在解码器之前设计三局部通道...针对现有文本识别方法推理速度慢、模型参数量大的问题,提出一种改进单点定位模型(single-point scene text spotting,SPTS)的轻量级端到端文本识别方法。首先,引入PP-LCNet作为骨干网络进行特征提取;接着,在解码器之前设计三局部通道注意力模块,通过3种不同尺度的一维卷积增强通道间的信息交互;然后,提出用局部增强注意力模块替换原解码器中的前馈网络部分,通过深度可分离卷积增强文本特征空间关联性;再后,在各层解码器之后设计标记选择模块,通过显著性标记突出文本特征,减少无关像素的累积;最后,通过自回归解码方式预测出相应识别结果。将所提方法在Total-Text、CTW1500和ICDAR2015数据集上进行实验,并与6种先进方法(ABCNet、MANGO、ABCNet v2、SPTS、SwinTextSpotter和TESTR)对比。相比于SPTS方法,所提方法的推理速度分别提高了19.6、35.7、21.1 f/s,参数量减少了70.7%,证明了所提方法的有效性。展开更多
文摘为实现电力变压器运维知识的有效沉淀,以运维文本为研究对象,提出一种融合规则的电力变压器运维知识图谱深度构建框架.首先根据专家指导自顶向下构建知识图谱概念层;然后融合规则和深度神经网络模型抽取知识,构建知识图谱的数据层.针对运维文本中的实体界限模糊和上下文信息利用不充分问题,提出一种通过扩展上下文信息和BERT(bidirectional encoder representations from transformers)获取扩展Span标签的方法,用于实体和关系抽取.算例分析表明,该方法在电力变压器运维数据集中知识抽取效果良好.
文摘针对现有文本识别方法推理速度慢、模型参数量大的问题,提出一种改进单点定位模型(single-point scene text spotting,SPTS)的轻量级端到端文本识别方法。首先,引入PP-LCNet作为骨干网络进行特征提取;接着,在解码器之前设计三局部通道注意力模块,通过3种不同尺度的一维卷积增强通道间的信息交互;然后,提出用局部增强注意力模块替换原解码器中的前馈网络部分,通过深度可分离卷积增强文本特征空间关联性;再后,在各层解码器之后设计标记选择模块,通过显著性标记突出文本特征,减少无关像素的累积;最后,通过自回归解码方式预测出相应识别结果。将所提方法在Total-Text、CTW1500和ICDAR2015数据集上进行实验,并与6种先进方法(ABCNet、MANGO、ABCNet v2、SPTS、SwinTextSpotter和TESTR)对比。相比于SPTS方法,所提方法的推理速度分别提高了19.6、35.7、21.1 f/s,参数量减少了70.7%,证明了所提方法的有效性。