现有目标检测模型在边缘设备上部署时,其检测性能和推理速度的平衡有较大提升空间。针对此问题,本文基于YOLO(you can only look once)v8提出一种可部署到多类边缘设备上的目标检测模型。在模型的骨干网络部分,设计了EC2f(extended coar...现有目标检测模型在边缘设备上部署时,其检测性能和推理速度的平衡有较大提升空间。针对此问题,本文基于YOLO(you can only look once)v8提出一种可部署到多类边缘设备上的目标检测模型。在模型的骨干网络部分,设计了EC2f(extended coarse-to-fine)结构,在降低参数量和计算复杂度的同时降低数据读写量;在颈部网络部分,将颈部网络替换为YOLOv6-3.0版本的颈部网络,加速了模型推理,并将推理精度维持在较好水平;预测头网络部分设计了多尺度卷积检测头,进一步降低了模型的计算复杂度和参数度。设计了两个版本(n/s尺度)以适应不同的边缘设备。在X光数据集的实验表明,模型在推理精度上比同尺度的基准模型分别提升0.5/1.7百分点,推理速度上分别提升11.6%/11.2%。在其他数据集上的泛化性能测试表明,模型的推理速度提升了10%以上,精度降低控制在1.3%以内。实验证明,模型在推理精度和速度之间实现了良好的平衡。展开更多
为了进一步提高多尺度目标检测的速度和精度,解决小目标检测易造成的漏检、错检以及重复检测等问题,提出一种基于改进YOLOv3的目标检测算法实现多尺度目标的自动检测。首先,在特征提取网络中对网络结构进行改进,在残差模块的空间维度中...为了进一步提高多尺度目标检测的速度和精度,解决小目标检测易造成的漏检、错检以及重复检测等问题,提出一种基于改进YOLOv3的目标检测算法实现多尺度目标的自动检测。首先,在特征提取网络中对网络结构进行改进,在残差模块的空间维度中引入注意力机制,对小目标进行关注;然后,利用密集连接网络(DenseNet)充分融合网络浅层信息,并用深度可分离卷积替换主干网络中的普通卷积,减少模型的参数量,提升检测速率。在特征融合网络中,通过双向金字塔结构实现深浅层特征的双向融合,并将3尺度预测变为4尺度预测,提高了多尺度特征的学习能力;在损失函数方面,选取GIoU(Generalized Intersection over Union)作为损失函数,提高目标识别的精度,降低目标漏检率。实验结果表明,基于改进YOLOv3(You Only Look Once v3)的目标检测算法在Pascal VOC测试集上的平均准确率均值(mAP)达到83.26%,与原YOLOv3算法相比提升了5.89个百分点,检测速度达22.0 frame/s;在COCO数据集上,与原YOLOv3算法相比,基于改进YOLOv3的目标检测算法在mAP上提升了3.28个百分点;同时,在进行多尺度的目标检测中,算法的mAP有所提升,验证了基于改进YOLOv3的目标检测算法的有效性。展开更多
文摘现有目标检测模型在边缘设备上部署时,其检测性能和推理速度的平衡有较大提升空间。针对此问题,本文基于YOLO(you can only look once)v8提出一种可部署到多类边缘设备上的目标检测模型。在模型的骨干网络部分,设计了EC2f(extended coarse-to-fine)结构,在降低参数量和计算复杂度的同时降低数据读写量;在颈部网络部分,将颈部网络替换为YOLOv6-3.0版本的颈部网络,加速了模型推理,并将推理精度维持在较好水平;预测头网络部分设计了多尺度卷积检测头,进一步降低了模型的计算复杂度和参数度。设计了两个版本(n/s尺度)以适应不同的边缘设备。在X光数据集的实验表明,模型在推理精度上比同尺度的基准模型分别提升0.5/1.7百分点,推理速度上分别提升11.6%/11.2%。在其他数据集上的泛化性能测试表明,模型的推理速度提升了10%以上,精度降低控制在1.3%以内。实验证明,模型在推理精度和速度之间实现了良好的平衡。
文摘为了进一步提高多尺度目标检测的速度和精度,解决小目标检测易造成的漏检、错检以及重复检测等问题,提出一种基于改进YOLOv3的目标检测算法实现多尺度目标的自动检测。首先,在特征提取网络中对网络结构进行改进,在残差模块的空间维度中引入注意力机制,对小目标进行关注;然后,利用密集连接网络(DenseNet)充分融合网络浅层信息,并用深度可分离卷积替换主干网络中的普通卷积,减少模型的参数量,提升检测速率。在特征融合网络中,通过双向金字塔结构实现深浅层特征的双向融合,并将3尺度预测变为4尺度预测,提高了多尺度特征的学习能力;在损失函数方面,选取GIoU(Generalized Intersection over Union)作为损失函数,提高目标识别的精度,降低目标漏检率。实验结果表明,基于改进YOLOv3(You Only Look Once v3)的目标检测算法在Pascal VOC测试集上的平均准确率均值(mAP)达到83.26%,与原YOLOv3算法相比提升了5.89个百分点,检测速度达22.0 frame/s;在COCO数据集上,与原YOLOv3算法相比,基于改进YOLOv3的目标检测算法在mAP上提升了3.28个百分点;同时,在进行多尺度的目标检测中,算法的mAP有所提升,验证了基于改进YOLOv3的目标检测算法的有效性。