超声检测信号中通常包含大量噪声,而其中材料晶界散射的噪声是一种相关噪声。鉴于传统的方法难以将这种噪声和缺陷回波信号区分,提出一种EMD和小波熵阈值联合降噪的算法。该算法首先对目标信号进行EMD分解,提取具有噪声特性的IMF分量进...超声检测信号中通常包含大量噪声,而其中材料晶界散射的噪声是一种相关噪声。鉴于传统的方法难以将这种噪声和缺陷回波信号区分,提出一种EMD和小波熵阈值联合降噪的算法。该算法首先对目标信号进行EMD分解,提取具有噪声特性的IMF分量进行小波分解,利用含噪系统熵增的特性,在分解各尺度层的细节部分选用小波熵自适应阈值降噪,然后将剩余分量和降噪处理后的信号进行重构。仿真信号结果表明:该降噪方法(EMD-WET)输出信号的信噪比(SNR)为7.9 d B、均方根误差(RMSE)为18.1、相似系数(NCC)为0.92,优于传统的小波软、硬阈值方法。对实测信号进行处理,该方法降低信号中的大部分噪声,更好地还原回波信号的波形。展开更多
风电机组的环境恶劣和工况多变导致风电机组故障频发,为了保障风电机组的可靠运行,基于数据的机组异常状态检测尤为重要。该研究提出一种基于级联深度学习预测模型的风电机组状态检测方法,首先对风电场数据采集与监视控制(supervisory c...风电机组的环境恶劣和工况多变导致风电机组故障频发,为了保障风电机组的可靠运行,基于数据的机组异常状态检测尤为重要。该研究提出一种基于级联深度学习预测模型的风电机组状态检测方法,首先对风电场数据采集与监视控制(supervisory control and data acquisition,SCADA)系统的数据进行预处理,并通过距离相关系数(distance correlation coefficient,DCC)分析选取输入参数;然后结合卷积神经网络(convolution neural network,CNN)和长短期神经网络(long short-term memory,LSTM)建立观测参数与目标参数之间的逻辑关系,通过均方根误差(root mean square error,RMSE)和样本熵(sample entropy,SE)对齿轮箱轴承温度预测残差进行分析,监测齿轮箱轴承温度异常变化;最后以华北某风场的SCADA数据进行算例验证,结果表明该方法能够准确检测到齿轮箱轴承温度异常,提前发现风电机组的早期故障,为风电机组安全可靠运行提供重要价值。展开更多
文摘超声检测信号中通常包含大量噪声,而其中材料晶界散射的噪声是一种相关噪声。鉴于传统的方法难以将这种噪声和缺陷回波信号区分,提出一种EMD和小波熵阈值联合降噪的算法。该算法首先对目标信号进行EMD分解,提取具有噪声特性的IMF分量进行小波分解,利用含噪系统熵增的特性,在分解各尺度层的细节部分选用小波熵自适应阈值降噪,然后将剩余分量和降噪处理后的信号进行重构。仿真信号结果表明:该降噪方法(EMD-WET)输出信号的信噪比(SNR)为7.9 d B、均方根误差(RMSE)为18.1、相似系数(NCC)为0.92,优于传统的小波软、硬阈值方法。对实测信号进行处理,该方法降低信号中的大部分噪声,更好地还原回波信号的波形。
文摘风电机组的环境恶劣和工况多变导致风电机组故障频发,为了保障风电机组的可靠运行,基于数据的机组异常状态检测尤为重要。该研究提出一种基于级联深度学习预测模型的风电机组状态检测方法,首先对风电场数据采集与监视控制(supervisory control and data acquisition,SCADA)系统的数据进行预处理,并通过距离相关系数(distance correlation coefficient,DCC)分析选取输入参数;然后结合卷积神经网络(convolution neural network,CNN)和长短期神经网络(long short-term memory,LSTM)建立观测参数与目标参数之间的逻辑关系,通过均方根误差(root mean square error,RMSE)和样本熵(sample entropy,SE)对齿轮箱轴承温度预测残差进行分析,监测齿轮箱轴承温度异常变化;最后以华北某风场的SCADA数据进行算例验证,结果表明该方法能够准确检测到齿轮箱轴承温度异常,提前发现风电机组的早期故障,为风电机组安全可靠运行提供重要价值。