面对网络图像的爆炸性增长,网络图像标注成为近年来一个热点研究内容,稀疏特征选择在提升网络图像标注效率和性能方面发挥着重要的作用.提出了一种增强稀疏性特征选择算法,即,基于l2,1/2矩阵范数和共享子空间的半监督稀疏特征选择算法(s...面对网络图像的爆炸性增长,网络图像标注成为近年来一个热点研究内容,稀疏特征选择在提升网络图像标注效率和性能方面发挥着重要的作用.提出了一种增强稀疏性特征选择算法,即,基于l2,1/2矩阵范数和共享子空间的半监督稀疏特征选择算法(semi-supervised sparse feature selection based on l2,1/2-matix norm with shared subspace learning,简称SFSLS)进行网络图像标注.在SFSLS算法中,应用l2,1/2矩阵范数来选取最稀疏和最具判别性的特征,通过共享子空间学习,考虑不同特征之间的关联信息.另外,基于图拉普拉斯的半监督学习,使SFSLS算法同时利用了有标签数据和无标签数据.设计了一种有效的迭代算法来最优化目标函数.SFSLS算法与其他稀疏特征选择算法在两个大规模网络图像数据库上进行了比较,结果表明,SFSLS算法更适合于大规模网络图像的标注.展开更多
目的有效滤除带钢表面缺陷图像高斯噪声。方法高斯噪声是影响带钢图像质量的主要噪声类型之一,针对带钢表面缺陷图像高斯噪声去噪,首先对传统K-SVD(K-means and singular value decomposition)算法中的字典进行升级改造,然后采用正交匹...目的有效滤除带钢表面缺陷图像高斯噪声。方法高斯噪声是影响带钢图像质量的主要噪声类型之一,针对带钢表面缺陷图像高斯噪声去噪,首先对传统K-SVD(K-means and singular value decomposition)算法中的字典进行升级改造,然后采用正交匹配追踪(OMP,Orthogonal Matching Pursuit)算法对图像进行重构,滤除噪声,最后运用此算法对缺陷图像进行高斯滤波处理。为验证该算法去噪效果,选取几种常见的典型缺陷图像(划伤、气泡、氧化色、粘结纹)进行测试仿真,并选用中值滤波、均值滤波、小波变换、维纳滤波、3维块匹配(BM3D)等多种传统滤波方法进行比较。结果该算法对四种典型缺陷去噪的PSNR(Peak Signal to Noise Ratio)值平均可达33.976 d B,MSE(Mean Square Error)平均值为27.607,SSIM(Structural Similarity)平均值为0.912。结论该算法对带钢表面缺陷重构图像的边缘细节清晰,PSNR、MSE、SSIM三个性能指标明显优于其他传统滤波算法,去噪效果良好。展开更多
文摘面对网络图像的爆炸性增长,网络图像标注成为近年来一个热点研究内容,稀疏特征选择在提升网络图像标注效率和性能方面发挥着重要的作用.提出了一种增强稀疏性特征选择算法,即,基于l2,1/2矩阵范数和共享子空间的半监督稀疏特征选择算法(semi-supervised sparse feature selection based on l2,1/2-matix norm with shared subspace learning,简称SFSLS)进行网络图像标注.在SFSLS算法中,应用l2,1/2矩阵范数来选取最稀疏和最具判别性的特征,通过共享子空间学习,考虑不同特征之间的关联信息.另外,基于图拉普拉斯的半监督学习,使SFSLS算法同时利用了有标签数据和无标签数据.设计了一种有效的迭代算法来最优化目标函数.SFSLS算法与其他稀疏特征选择算法在两个大规模网络图像数据库上进行了比较,结果表明,SFSLS算法更适合于大规模网络图像的标注.
文摘目的有效滤除带钢表面缺陷图像高斯噪声。方法高斯噪声是影响带钢图像质量的主要噪声类型之一,针对带钢表面缺陷图像高斯噪声去噪,首先对传统K-SVD(K-means and singular value decomposition)算法中的字典进行升级改造,然后采用正交匹配追踪(OMP,Orthogonal Matching Pursuit)算法对图像进行重构,滤除噪声,最后运用此算法对缺陷图像进行高斯滤波处理。为验证该算法去噪效果,选取几种常见的典型缺陷图像(划伤、气泡、氧化色、粘结纹)进行测试仿真,并选用中值滤波、均值滤波、小波变换、维纳滤波、3维块匹配(BM3D)等多种传统滤波方法进行比较。结果该算法对四种典型缺陷去噪的PSNR(Peak Signal to Noise Ratio)值平均可达33.976 d B,MSE(Mean Square Error)平均值为27.607,SSIM(Structural Similarity)平均值为0.912。结论该算法对带钢表面缺陷重构图像的边缘细节清晰,PSNR、MSE、SSIM三个性能指标明显优于其他传统滤波算法,去噪效果良好。