基于南水北调工程巡检专报结合专家经验构建巡检知识图谱概念模型,在此基础上利用实体关系联合抽取框架进行巡检知识抽取,并以Neo4j图数据库为载体进行巡检知识图谱可视化。基于巡检知识图谱进行南水北调工程巡检信息推荐,利用BERT(Bi-d...基于南水北调工程巡检专报结合专家经验构建巡检知识图谱概念模型,在此基础上利用实体关系联合抽取框架进行巡检知识抽取,并以Neo4j图数据库为载体进行巡检知识图谱可视化。基于巡检知识图谱进行南水北调工程巡检信息推荐,利用BERT(Bi-directional encoder representation from transformers)预训练模型设计BERT孪生网络,通过知识检索及字符串相似度计算等技术,实现关联工程风险信息推荐,以辅助巡检人员进行工程风险等级诊断。通过实验评估了知识抽取及字符串相似度计算模型的准确性,知识抽取F1值达到88.42%,字符串相似度计算F1值为86.00%。该方法可提高南水北调工程风险管理能力、推动工程运维的数字化发展。展开更多
有效地识别学科交叉文献,不仅有助于及时把握学科交叉的研究态势、实时跟踪学科交叉地带的科研活动,还能为科研决策提供有力支持。本文根据科技文献蕴含的语义交叉性,提出一种基于改进的深度学习模型的学科交叉文献识别方法。首先,通过...有效地识别学科交叉文献,不仅有助于及时把握学科交叉的研究态势、实时跟踪学科交叉地带的科研活动,还能为科研决策提供有力支持。本文根据科技文献蕴含的语义交叉性,提出一种基于改进的深度学习模型的学科交叉文献识别方法。首先,通过“文本合并”获得用于学科交叉文献识别的训练数据集;其次,提出一种改进的基于深度学习的文本分类模型,并在训练集上进行模型训练;最后,基于训练好的模型,对待分析的科技文献是否为学科交叉文献进行判别。在“牙科材料学”和“计算生物学”两个数据集上,对本文方法进行实证研究。结果表明,本文方法在学科交叉文献识别上具有较好的有效性,在两个数据集上计算得到的AUC(area under the curve)值分别达到0.741和0.966。与传统的基于深度学习的文本分类方法相比,本文方法可以在不依赖任何交叉学科先验知识的情况下,基于已有的非学科交叉文献训练学科交叉文献识别模型,从而能够在新的科技文献出现时,准确地判别其是否为学科交叉文献,实现有发展潜力的前沿交叉领域的实时监测。同时,学科交叉文献识别的效果也得到了较大幅度的提高。展开更多
随着基于位置的社交网络的快速发展,下一个PoI(point of interest)推荐已成为推荐领域的研究热点。然而现有研究模型忽略了PoI的时空特征以及上下文信息对下一个PoI推荐的效果。针对该问题,提出一种时空上下文感知的下一个PoI推荐方法...随着基于位置的社交网络的快速发展,下一个PoI(point of interest)推荐已成为推荐领域的研究热点。然而现有研究模型忽略了PoI的时空特征以及上下文信息对下一个PoI推荐的效果。针对该问题,提出一种时空上下文感知的下一个PoI推荐方法。首先,利用图注意力网络(GAT)学习包含社交关系的用户表征;并且通过流行度增强二部图神经网络(PEBGNN)学习含有PoI交互偏好的用户表征和PoI表征;同时,利用时空图卷积网络(ST-GCN)学习PoI时空转移偏好的PoI表征;最后,通过融合所学到的用户表征和PoI表征,计算出用户对于各个PoI的预测评分,以此为基础为用户推荐下一个PoI。为了验证该方法的有效性,在Gowalla、Foursquare以及Yelp这三个公开的数据集上进行了测试。实验结果显示,相比于多个基准模型,所提方法在准确率和召回率方面均展现出了显著的优势,分别平均提升28.53%和7.65%。展开更多
长距离输水工程线路长,沿线环境复杂,在输水工程日常运行过程中,工程安全巡检是维护生产安全的重要手段。在工程巡检中产生了大量的巡检文本数据。在传统生产管理过程中,巡检文本依赖于管理人员人工按照出现问题的严重程度进行分类,效...长距离输水工程线路长,沿线环境复杂,在输水工程日常运行过程中,工程安全巡检是维护生产安全的重要手段。在工程巡检中产生了大量的巡检文本数据。在传统生产管理过程中,巡检文本依赖于管理人员人工按照出现问题的严重程度进行分类,效率低下且容易出现主观性问题分类出错,不足以良好管理长线路,沿线环境复杂的输水工程。针对这一问题,提出一种结合双向长短期记忆神经网络(Bi-directional Long Short-Term Memory)和BERT神经网络的混合深度学习模型对巡检文本智能分类方法,模型使用BERT作为输入层将巡检文本转化为特征向量,再将结果输入到BiLSTM模型挖掘文本特征,实现巡检文本智能分类。以南水北调中线巡检文本为算例,实验结果表明:该模型与主流深度学习模型文本卷积神经网络(TextCNN),BERT,BiLSTM模型相比,准确率、召回率和F1值分别达到92.30%、92.32%、92.30%,模型性能优于其他深度学习模型。展开更多
文摘基于南水北调工程巡检专报结合专家经验构建巡检知识图谱概念模型,在此基础上利用实体关系联合抽取框架进行巡检知识抽取,并以Neo4j图数据库为载体进行巡检知识图谱可视化。基于巡检知识图谱进行南水北调工程巡检信息推荐,利用BERT(Bi-directional encoder representation from transformers)预训练模型设计BERT孪生网络,通过知识检索及字符串相似度计算等技术,实现关联工程风险信息推荐,以辅助巡检人员进行工程风险等级诊断。通过实验评估了知识抽取及字符串相似度计算模型的准确性,知识抽取F1值达到88.42%,字符串相似度计算F1值为86.00%。该方法可提高南水北调工程风险管理能力、推动工程运维的数字化发展。
文摘有效地识别学科交叉文献,不仅有助于及时把握学科交叉的研究态势、实时跟踪学科交叉地带的科研活动,还能为科研决策提供有力支持。本文根据科技文献蕴含的语义交叉性,提出一种基于改进的深度学习模型的学科交叉文献识别方法。首先,通过“文本合并”获得用于学科交叉文献识别的训练数据集;其次,提出一种改进的基于深度学习的文本分类模型,并在训练集上进行模型训练;最后,基于训练好的模型,对待分析的科技文献是否为学科交叉文献进行判别。在“牙科材料学”和“计算生物学”两个数据集上,对本文方法进行实证研究。结果表明,本文方法在学科交叉文献识别上具有较好的有效性,在两个数据集上计算得到的AUC(area under the curve)值分别达到0.741和0.966。与传统的基于深度学习的文本分类方法相比,本文方法可以在不依赖任何交叉学科先验知识的情况下,基于已有的非学科交叉文献训练学科交叉文献识别模型,从而能够在新的科技文献出现时,准确地判别其是否为学科交叉文献,实现有发展潜力的前沿交叉领域的实时监测。同时,学科交叉文献识别的效果也得到了较大幅度的提高。
文摘随着基于位置的社交网络的快速发展,下一个PoI(point of interest)推荐已成为推荐领域的研究热点。然而现有研究模型忽略了PoI的时空特征以及上下文信息对下一个PoI推荐的效果。针对该问题,提出一种时空上下文感知的下一个PoI推荐方法。首先,利用图注意力网络(GAT)学习包含社交关系的用户表征;并且通过流行度增强二部图神经网络(PEBGNN)学习含有PoI交互偏好的用户表征和PoI表征;同时,利用时空图卷积网络(ST-GCN)学习PoI时空转移偏好的PoI表征;最后,通过融合所学到的用户表征和PoI表征,计算出用户对于各个PoI的预测评分,以此为基础为用户推荐下一个PoI。为了验证该方法的有效性,在Gowalla、Foursquare以及Yelp这三个公开的数据集上进行了测试。实验结果显示,相比于多个基准模型,所提方法在准确率和召回率方面均展现出了显著的优势,分别平均提升28.53%和7.65%。
文摘长距离输水工程线路长,沿线环境复杂,在输水工程日常运行过程中,工程安全巡检是维护生产安全的重要手段。在工程巡检中产生了大量的巡检文本数据。在传统生产管理过程中,巡检文本依赖于管理人员人工按照出现问题的严重程度进行分类,效率低下且容易出现主观性问题分类出错,不足以良好管理长线路,沿线环境复杂的输水工程。针对这一问题,提出一种结合双向长短期记忆神经网络(Bi-directional Long Short-Term Memory)和BERT神经网络的混合深度学习模型对巡检文本智能分类方法,模型使用BERT作为输入层将巡检文本转化为特征向量,再将结果输入到BiLSTM模型挖掘文本特征,实现巡检文本智能分类。以南水北调中线巡检文本为算例,实验结果表明:该模型与主流深度学习模型文本卷积神经网络(TextCNN),BERT,BiLSTM模型相比,准确率、召回率和F1值分别达到92.30%、92.32%、92.30%,模型性能优于其他深度学习模型。