期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于簇中心群的时间序列数据分类方法 被引量:9
1
作者 李海林 万校基 《电子科技大学学报》 EI CAS CSCD 北大核心 2017年第3期625-630,共6页
分类算法是时间序列数据挖掘中极为重要的任务和技术,该文提出一种基于簇中心群的时间序列数据分类方法。该方法根据时间序列训练数据集中的类别标签进行簇划分,利用近邻传播算法分别对每个簇进行中心代表点选择,构造出各代表点的代表... 分类算法是时间序列数据挖掘中极为重要的任务和技术,该文提出一种基于簇中心群的时间序列数据分类方法。该方法根据时间序列训练数据集中的类别标签进行簇划分,利用近邻传播算法分别对每个簇进行中心代表点选择,构造出各代表点的代表对象集;然后借助基于动态时间弯曲的均值中心方法对各代表对象集实现中心群计算,结合改进后的K近邻算法实现时间序列数据的分类。数值实验结果表明,与传统方法相比,新方法具有更好的分类效果和计算性能。 展开更多
关键词 近邻传播 分类算法 数据挖掘 动态时间弯曲 时间序列
在线阅读 下载PDF
跨界团队网络特征对其颠覆性创新绩效的影响研究 被引量:5
2
作者 林春培 朱晓艳 +2 位作者 余传鹏 廖杨月 李海林 《情报学报》 CSSCI CSCD 北大核心 2024年第4期391-404,共14页
跨界团队在企业等创新主体开展颠覆性创新活动中发挥重要作用,而运用机器学习方法识别其网络特征与颠覆性创新绩效之间殊途同归的组态路径是一个亟待解决的重要问题。本文基于Incopat专利检索平台无人机领域139999条专利数据,采用社区... 跨界团队在企业等创新主体开展颠覆性创新活动中发挥重要作用,而运用机器学习方法识别其网络特征与颠覆性创新绩效之间殊途同归的组态路径是一个亟待解决的重要问题。本文基于Incopat专利检索平台无人机领域139999条专利数据,采用社区发现算法在专利发明人合作关系数据中识别185个跨界团队,依据社会网络理论遴选跨界团队网络特征变量,利用k-means聚类算法对跨界团队进行类型划分,并运用决策树CART(classification and regression trees)算法挖掘不同类型跨界团队网络特征对其颠覆性创新绩效的影响。研究结果表明,①跨界团队共有二元合作、类完全合作和复杂合作3种合作类型,不同跨界团队类型对颠覆性创新绩效影响具有差异性,即类完全合作团队高颠覆性创新绩效占比最高,二元合作团队高颠覆性创新绩效占比最低;②合作强度具有普适性,它是影响不同跨界团队形成不同水平颠覆性创新绩效的核心因素;③合作强度正向影响二元合作团队颠覆性创新绩效,类完全合作团队的颠覆性创新绩效受聚集系数、合作强度与团队规模的共同影响,而对于合作强度较高的复杂合作团队而言,保持较低的网络密度有利于其提升颠覆性创新绩效。 展开更多
关键词 颠覆性创新绩效 跨界团队 网络特征 决策规则 聚类分析
在线阅读 下载PDF
基于关键词重要性和近邻传播聚类的主题分析研究 被引量:29
3
作者 李海林 万校基 林春培 《情报学报》 CSSCI CSCD 北大核心 2018年第5期533-542,共10页
鉴于传统科学计量方法存在共现分析缺少考虑关键词重要性和主题分析手段不能自适应地抽取核心主题等问题,本文提出一种基于关键词重要性和近邻传播聚类的主题分析方法。该方法依据大多数作者的潜在行为会按照与研究内容相关性的强弱顺... 鉴于传统科学计量方法存在共现分析缺少考虑关键词重要性和主题分析手段不能自适应地抽取核心主题等问题,本文提出一种基于关键词重要性和近邻传播聚类的主题分析方法。该方法依据大多数作者的潜在行为会按照与研究内容相关性的强弱顺序提供论文关键词,计算关键词在每个文献中的重要程度,构建主要关键词之间的相似性矩阵,结合能够反馈最优簇成员代表性结果的近邻传播聚类实现核心主题的提取与分析。本研究对图书情报类某刊物2012-2016年期间的文献关键词进行数据挖掘,使用新方法实现了基于重要性度量的主要关键词聚类,分析和研究了主要关键词和核心主题的演化趋势。提出的方法不仅能够考虑关键词重要性和自动识别核心主题,还可以为文献主题分析提供新的数据挖掘方法,也能有效提高期刊和学科等相关领域的主题识别效果。 展开更多
关键词 主题分析 关键词重要性 近邻传播聚类 核心主题
在线阅读 下载PDF
标签传播时间序列聚类的股指期货套期保值策略研究 被引量:1
4
作者 李海林 梁叶 《智能系统学报》 CSCD 北大核心 2019年第2期288-295,共8页
利用时间序列聚类方法进行股指期货的套期保值,关键要选择合适的聚类方法。本文从新的视角来研究并提高时间序列聚类方法在金融数据分析领域的应用性能,提出一种基于标签传播时间序列聚类的股指期货套期保值模型。该模型以动态时间弯曲... 利用时间序列聚类方法进行股指期货的套期保值,关键要选择合适的聚类方法。本文从新的视角来研究并提高时间序列聚类方法在金融数据分析领域的应用性能,提出一种基于标签传播时间序列聚类的股指期货套期保值模型。该模型以动态时间弯曲为相似性度量方法来构建现货股票网络空间结构,将每只股票看作一个节点,利用标签传播方法将节点划分到不同的簇中,最终实现股票数据聚类。另外,构建最小追踪误差优化模型来确定每支股票在现货组合中的最优权重,从而得到最优组合。实验分别比较新方法和传统聚类方法确定现货组合的追踪误差,结果表明新方法能够提高现货组合的追踪精度,为丰富金融市场投资和管理方式提供新的研究思路。 展开更多
关键词 标签传播 时间序列 聚类 动态时间弯曲 套期保值
在线阅读 下载PDF
基于近邻传播的限定簇数聚类方法研究 被引量:3
5
作者 李海林 魏苗 《电子科技大学学报》 EI CAS CSCD 北大核心 2018年第5期733-739,共7页
针对传统近邻传播聚类算法不能进行限定类簇数目的聚类缺陷,提出一种三阶段的改进聚类方法。该方法通过近邻传播聚类从数据集中获得中心代表点集合,利用K-means算法对中心代表点集合进行指定类簇数目的聚类进而获得初始训练集,结合改进... 针对传统近邻传播聚类算法不能进行限定类簇数目的聚类缺陷,提出一种三阶段的改进聚类方法。该方法通过近邻传播聚类从数据集中获得中心代表点集合,利用K-means算法对中心代表点集合进行指定类簇数目的聚类进而获得初始训练集,结合改进的K最近邻算法实现数据的聚类分析。采用人工仿真数据及UCI数据集进行对比实验,实验结果分析表明,与近邻传播聚类算法和传统限定类簇数目的聚类算法相比,新聚类算法具有更好的聚类效果。 展开更多
关键词 近邻传播 聚类算法 类簇数目 数据挖掘 K均值聚类
在线阅读 下载PDF
基于分类词典的文本相似性度量方法 被引量:6
6
作者 李海林 邹金串 《智能系统学报》 CSCD 北大核心 2017年第4期556-562,共7页
针对现有基于语义知识规则分析的文本相似性度量方法存在时间复杂度高的局限性,提出基于分类词典的文本相似性度量方法。利用汉语词法分析系统ICTCLAS对文本分词,运用TF×IDF方法提取文本关键词,遍历分类词典获取关键词编码,通过计... 针对现有基于语义知识规则分析的文本相似性度量方法存在时间复杂度高的局限性,提出基于分类词典的文本相似性度量方法。利用汉语词法分析系统ICTCLAS对文本分词,运用TF×IDF方法提取文本关键词,遍历分类词典获取关键词编码,通过计算文本关键词编码的近似性来衡量原始文本之间的相似度。选取基于语义知识规则和基于统计两个类别的相似性度量方法作为对比方法,通过传统聚类与KNN分类分别对相似性度量方法进行效果验证。数值实验结果表明,新方法在聚类与分类实验中均能取得较好的实验结果,相较于其他基于语义分析的相似性度量方法还具有良好的时间效率。 展开更多
关键词 文本挖掘 语义分析 分类词典 关键词提取 词语编码 相似性度量 聚类 分类
在线阅读 下载PDF
基于同步频繁树的时间序列关联规则分析 被引量:6
7
作者 李海林 龙芳菊 《智能系统学报》 CSCD 北大核心 2021年第3期502-510,共9页
针对经典算法Apriori和频繁模式增长算法(frequent pattern growth, FP-growth)不能直接对时间序列数据进行关联规则挖掘的问题,提出一种同步频繁树算法(synchronize frequent tree, SFT)。利用时间序列的时间属性具有一维性的特点,定... 针对经典算法Apriori和频繁模式增长算法(frequent pattern growth, FP-growth)不能直接对时间序列数据进行关联规则挖掘的问题,提出一种同步频繁树算法(synchronize frequent tree, SFT)。利用时间序列的时间属性具有一维性的特点,定义趋势项-位置表示法表示时间序列数据,将首条时间序列构建成一棵基础树,通过计算树叶子节点与列表项的信息交集,可判断其是否与该树枝中的所有节点构成频繁K项集。在SFT算法中,用趋势项-位置表示的数据内存占用情况要优于原始数据,并且在挖掘过程中不会产生候选频繁项集,使得算法在整个挖掘过程中表现出较好的时间性能。基于商品数据和股票数据的数值实验表明,SFT算法所得结果不仅与其他5种对比算法的结果一致,在各量级的数据和不同的支持度计数中,其时间复杂度都要优于对比算法。 展开更多
关键词 时间序列 线性分段 趋势项-位置 事务集表示 频繁项集 同步频繁树 关联规则 时间效率
在线阅读 下载PDF
自适应属性加权近邻传播聚类算法 被引量:4
8
作者 李海林 魏苗 《电子科技大学学报》 EI CAS CSCD 北大核心 2018年第2期247-255,共9页
针对多维数据属性对聚类分析结果有不同重要程度影响的问题,提出一种基于自适应属性加权的近邻传播聚类算法。该方法通过考虑多维数据属性权值的重要度,在近邻传播聚类过程中引入属性加权相似性矩阵计算,并根据当前数据聚类划分的结果... 针对多维数据属性对聚类分析结果有不同重要程度影响的问题,提出一种基于自适应属性加权的近邻传播聚类算法。该方法通过考虑多维数据属性权值的重要度,在近邻传播聚类过程中引入属性加权相似性矩阵计算,并根据当前数据聚类划分的结果来分析目标评价函数,计算各个属性对当前聚类的贡献程度。随后根据贡献程度的计算结果自适应地更新属性权值,并通过属性加权相似性矩阵来重新计算近邻传播算法中的两种竞争信息,进而提高聚类结果的质量。数值实验结果表明,新方法能够有效实现属性权值的自适应调整,提高近邻传播算法的聚类效果,与其他传统聚类算法相比新方法具有更好的聚类质量。 展开更多
关键词 自适应聚类 近邻传播 聚类评价 属性加权 相似性度量
在线阅读 下载PDF
中国省际能源效率与环境污染 被引量:1
9
作者 王婷婷 《管理现代化》 CSSCI 北大核心 2015年第6期55-57,共3页
提出生态博弈交叉Malmquist TFP指数模型,对中国省际环境约束下的能源效率进行分析。研究表明,我国能源效率表现欠佳,受效率变动和技术变动双重影响,测度结果呈现东、中、西三大地区逐级递减,但两极分化趋势不显著。
关键词 能源效率 环境污染 eco-GCMalmquist TFP指数
在线阅读 下载PDF
一种结合时空上下文的在线卷积网络跟踪算法 被引量:5
10
作者 柳培忠 汪鸿翔 +1 位作者 骆炎民 杜永兆 《计算机研究与发展》 EI CSCD 北大核心 2018年第12期2785-2793,共9页
基于卷积神经网络提取抽象特征缺乏时空信息的问题,结合时空上下文模型作为卷积神经网络的各阶滤波器,提出一种在线卷积神经网络的视觉跟踪算法.首先对初始目标进行归一化处理并提取目标置信图,跟踪过程中结合时空信息更新得到时空上下... 基于卷积神经网络提取抽象特征缺乏时空信息的问题,结合时空上下文模型作为卷积神经网络的各阶滤波器,提出一种在线卷积神经网络的视觉跟踪算法.首先对初始目标进行归一化处理并提取目标置信图,跟踪过程中结合时空信息更新得到时空上下文模型,第1层使用更新后的模型对输入进行卷积,并对卷积结果进行滑动窗口取片,第2层再使用时空模型分别对取片结果进行卷积,提取目标简单抽象特征,然后叠加简单层的卷积结果得到目标的深层次表达,最后结合粒子滤波跟踪框架实现目标跟踪.实验表明:结合时空上下文模型的在线卷积网络结构提取的深度抽象特征,保留相关时空信息,提高复杂背景下的跟踪效率. 展开更多
关键词 视觉跟踪 时空上下文 卷积神经网络 粒子滤波 在线更新
在线阅读 下载PDF
基于节点影响力的理性节点标签传播算法 被引量:2
11
作者 皇甫斐斐 杨阳 邓晓懿 《计算机工程与科学》 CSCD 北大核心 2022年第4期713-722,共10页
社区发现能够揭示真实社会网络的拓扑结构和重要节点。由于具有线性时间复杂度,无需定义目标函数及目标参数,标签传播算法(LPA)作为经典社区发现算法被广泛应用在学术和实践领域。针对LPA算法更新顺序的无序性和标签选择的随机性,提出... 社区发现能够揭示真实社会网络的拓扑结构和重要节点。由于具有线性时间复杂度,无需定义目标函数及目标参数,标签传播算法(LPA)作为经典社区发现算法被广泛应用在学术和实践领域。针对LPA算法更新顺序的无序性和标签选择的随机性,提出基于节点影响力的理性节点标签传播算法(RLPBNI)。将节点影响力排序作为更新顺序,引入理性节点概念进行标签选择,并定义重叠度进行社区再降维。实验结果表明,与其他对比算法相比,RLPBNI算法不但可有效提高社区划分精度,且更容易发现混合程度较高的网络中隐藏的社区。 展开更多
关键词 社区发现 标签传播 节点影响力 理性节点 复杂网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部