期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
电动汽车驱动电机与负载模拟系统建模及电弧故障仿真研究 被引量:5
1
作者 杨凯 庄宏航 +2 位作者 董毓利 张认成 涂然 《电子测量与仪器学报》 CSCD 北大核心 2024年第1期237-245,共9页
电弧故障是引发电动汽车电气火灾的重要原因之一。电动汽车行驶工况复杂,电机及其驱动系统电压高、电流大,且其电弧故障随机性强、隐蔽性高导致真车故障实验难以开展,因此提出一种借助小功率电机与负载系统模拟故障的方法,以便快速开展... 电弧故障是引发电动汽车电气火灾的重要原因之一。电动汽车行驶工况复杂,电机及其驱动系统电压高、电流大,且其电弧故障随机性强、隐蔽性高导致真车故障实验难以开展,因此提出一种借助小功率电机与负载系统模拟故障的方法,以便快速开展大量实验,研究电弧故障特性。首先,在电动汽车负载转矩计算和等效缩放的基础上搭建了模拟实验平台,采集三相永磁同步电机线路串联电弧故障电流。其次,运用MATLAB软件构建空间矢量脉宽调制控制的电动汽车驱动电机与负载模拟系统,引入Cassie电弧故障模型并进行改进,对电动汽车三相永磁同步电机线路串联电弧故障展开仿真分析。最后,采用基于平肩宽度占比和小波包分解能量占比的特征提取方法,将仿真数据与实测数据进行比较并定量评价。结果表明,所提出的高斯电弧故障复合模型的相对平均误差最小,仅为7.6%。所构建的仿真系统可有效模拟实际线路的电弧故障,对电动汽车电气火灾的防控具有重要意义。 展开更多
关键词 电动汽车 驱动电机 负载模拟 电弧故障 模型评价
在线阅读 下载PDF
锂电池膨胀形成机制研究现状 被引量:18
2
作者 梁浩斌 杜建华 +3 位作者 郝鑫 杨世治 涂然 张认成 《储能科学与技术》 CAS CSCD 北大核心 2021年第2期647-657,共11页
锂电池作为一种能源载体,使用时内部无时无刻都在发生着化学反应及材料变形,导致锂电池形状随着使用状态而持续变化。锂电池硬质和软质外壳材料均具有一定的延展性,在锂电池发生热失控的早期阶段,一系列物理和化学变化会在锂电池内部形... 锂电池作为一种能源载体,使用时内部无时无刻都在发生着化学反应及材料变形,导致锂电池形状随着使用状态而持续变化。锂电池硬质和软质外壳材料均具有一定的延展性,在锂电池发生热失控的早期阶段,一系列物理和化学变化会在锂电池内部形成压力作用。随着时间的推移,锂电池会发生较大的膨胀造成电池单体间明显的压力变化。因此,研究锂电池膨胀形成的机制对锂电池热失控早期探测预警具有极为重要的意义。本文对国内外锂电池膨胀形成机制的研究进行了综述,总结了造成锂电池膨胀的主要原因,并从锂电池电极材料、电解液、充放电温度、充放电电压、充放电电流五个方面出发,分析了它们对锂电池膨胀的影响。最后,通过各影响因素的研究结果,对未来控制锂电池产气鼓胀的方法与方向进行展望,并对锂电池热失控早期探测预警系统提出更有效的预警建议。 展开更多
关键词 锂电池 膨胀 压力形变 早期预警
在线阅读 下载PDF
锂离子电池冲击挤压后安全特性研究综述 被引量:7
3
作者 郝鑫 杜建华 +3 位作者 梁浩斌 杨世治 涂然 张认成 《消防科学与技术》 CAS 北大核心 2021年第7期963-967,共5页
从实验和仿真两个角度综述了近年来国内外针对冲击挤压后锂离子电池安全特性的相关研究,从冲头形状、机械加载方式、机械加载位置、SOC状态4个影响因素进行分析总结。分析结果表明,锂离子电池内短路面积越大、冲击挤压位置越边缘、SOC越... 从实验和仿真两个角度综述了近年来国内外针对冲击挤压后锂离子电池安全特性的相关研究,从冲头形状、机械加载方式、机械加载位置、SOC状态4个影响因素进行分析总结。分析结果表明,锂离子电池内短路面积越大、冲击挤压位置越边缘、SOC越高,则其失效时温度越高、电压突降越快、越易热失控;而锂离子电池应变量越大,内阻越小。根据冲击挤压热失控前锂电池的电压、温度、内阻等多种安全特性参数变化规律,建立锂电池安全状态的早期预警识别方法,对于防范新能源汽车因冲击挤压造成的热失控安全事故极为必要。 展开更多
关键词 锂离子电池 冲击挤压 安全特性 热失控 安全性分析
在线阅读 下载PDF
基于模型的锂离子电池SOC估计方法综述 被引量:45
4
作者 谭必蓉 杜建华 +2 位作者 叶祥虎 曹馨 瞿常 《储能科学与技术》 CAS CSCD 北大核心 2023年第6期1995-2010,共16页
锂离子电池由于其高能量密度、高循环寿命等优点被广泛应用于电力储能和新能源汽车中。准确估计电池的荷电状态(state of charge,SOC)对提高电池使用寿命和利用效率具有重要意义。然而,锂电池是一个高度复杂、时变和非线性的电化学系统... 锂离子电池由于其高能量密度、高循环寿命等优点被广泛应用于电力储能和新能源汽车中。准确估计电池的荷电状态(state of charge,SOC)对提高电池使用寿命和利用效率具有重要意义。然而,锂电池是一个高度复杂、时变和非线性的电化学系统。因此,精度高的在线SOC估计方法对锂电池的实际应用非常重要。近年来,基于模型的SOC估计方法由于其闭环控制、易于实现等特点被广泛关注和研究。本文从模型分类、模型参数辨识算法、SOC估计算法以及SOC估计影响因素对基于模型的SOC估计方法进行综述,首先归纳总结了各种常见的锂离子电池模型,主要介绍了各种常见电化学模型和等效电路模型并进行对比分析;然后重点对模型建立方法和SOC状态估计算法进行梳理和对比,主要介绍了各种模型参数辨识方法及SOC估计方法并进行了对比分析;之后对影响基于模型的SOC估计方法精度的影响因素及解决方法进行分析和总结,主要从温度、老化以及电池组对电池SOC估计的影响进行分析;最后对未来的研究方向进行了讨论和展望。 展开更多
关键词 锂离子电池 等效电路模型 电化学模型 荷电状态 在线估算
在线阅读 下载PDF
基于割率的线性方程抗迟滞方法 被引量:1
5
作者 傅雨晨 范伟 +1 位作者 于欣妍 金花雪 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第10期130-137,共8页
针对压电陶瓷驱动器固有的迟滞特性对定位及控制精度的影响,找到了一种基于割率的线性方程抗迟滞方法。首先计算出迟滞曲线上升、下降轨迹各采样点及目标修正直线的割率比,即割率系数β;将采样电压与对应β的关系曲线分段拟合成线性方程... 针对压电陶瓷驱动器固有的迟滞特性对定位及控制精度的影响,找到了一种基于割率的线性方程抗迟滞方法。首先计算出迟滞曲线上升、下降轨迹各采样点及目标修正直线的割率比,即割率系数β;将采样电压与对应β的关系曲线分段拟合成线性方程组;最后将采样电压带入方程组求出修正电压,作出驱动控制曲线。结合上述抗迟滞原理,驱动器的最大迟滞误差从14.543%减小为1.268%,重复性误差小于1.497%,非线性误差小于4.497%。相对于繁琐复杂的建模算法,该方法能以比例放大及加法运算电路的形式实现对迟滞曲线的修正,算法仅为一次方程组,具有更高的可实施性和可操作性,为进一步提高压电陶瓷驱动器的定位及控制精度提供了科学的参考依据。 展开更多
关键词 压电陶瓷驱动器 割率 割率系数 线性方程 修正电压
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部