期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
用BERT和改进PCNN模型抽取食品安全领域关系
被引量:
8
1
作者
赵良
张赵玥
+1 位作者
廖子逸
王玲
《农业工程学报》
EI
CAS
CSCD
北大核心
2022年第8期263-270,共8页
为了提高食品安全领域关系抽取的效率和准确性,该研究在收集食品安全领域语料的基础上,对语料中相应的实体和关系进行标注,构建可用于食品安全领域关系抽取的专业数据集。同时,提出面向食品安全领域的基于BERT-PCNN-ATT-Jieba的关系抽...
为了提高食品安全领域关系抽取的效率和准确性,该研究在收集食品安全领域语料的基础上,对语料中相应的实体和关系进行标注,构建可用于食品安全领域关系抽取的专业数据集。同时,提出面向食品安全领域的基于BERT-PCNN-ATT-Jieba的关系抽取模型,该模型使用基于转换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)预训练模型生成输入词向量,并结合分段卷积神经网络(Piecewise Convolutional Neural Network,PCNN)模型的分段最大池化层能极大程度捕获句子局部信息的特点,在分段最大池化层与分类层之间添加了注意力机制,以进一步提取高层语义。此外,考虑中文语料的特性,在BERT模型进行随机掩码切分之前,采用Jieba分词技术对中文语料进行分词,PCNN模型在执行掩码语言模型(Masked Language Model,MLM)时以词为单位进行掩码,使得输入到训练模型中的句子尽可能减少语义损失,以实现更高效的关系抽取。在该研究构建的数据集基础上,将BERT-PCNN-ATT-Jieba模型与经典的卷积神经网络(Convolutional Neural Network,CNN)、PCNN模型、以及结合BERT的CNN、PCNN、PCNN-ATT、PCNN-Jieba等6个模型进行比较,该研究提出的BERT-PCNN-ATT-Jieba模型取得更优的性能,其准确率达到84.72%,召回率达到81.78%,F值达到83.22%。该模型为食品安全领域的知识抽取提供参考,为该领域知识图谱的自动化构建节约了成本,同时为基于该领域知识图谱的知识问答、知识检索、数据共享及食品安全智慧监管等应用提供依据。
展开更多
关键词
食品安全
模型
关系抽取
知识图谱
注意力机制
BERT
PCNN
在线阅读
下载PDF
职称材料
题名
用BERT和改进PCNN模型抽取食品安全领域关系
被引量:
8
1
作者
赵良
张赵玥
廖子逸
王玲
机构
华中
农业
大学
信息
学院
湖北省农业大数据工程技术研究中心(
华中
农业
大学
)
华中科技大学网络安全学院
华中科技大学
武汉国家光电研究中心
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2022年第8期263-270,共8页
基金
国家重点研发计划项目(2018YFC1604005)
中央高校基本科研业务费专项资金资助(2662019PY070,2662022JC004,2662022XXYJ001)。
文摘
为了提高食品安全领域关系抽取的效率和准确性,该研究在收集食品安全领域语料的基础上,对语料中相应的实体和关系进行标注,构建可用于食品安全领域关系抽取的专业数据集。同时,提出面向食品安全领域的基于BERT-PCNN-ATT-Jieba的关系抽取模型,该模型使用基于转换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)预训练模型生成输入词向量,并结合分段卷积神经网络(Piecewise Convolutional Neural Network,PCNN)模型的分段最大池化层能极大程度捕获句子局部信息的特点,在分段最大池化层与分类层之间添加了注意力机制,以进一步提取高层语义。此外,考虑中文语料的特性,在BERT模型进行随机掩码切分之前,采用Jieba分词技术对中文语料进行分词,PCNN模型在执行掩码语言模型(Masked Language Model,MLM)时以词为单位进行掩码,使得输入到训练模型中的句子尽可能减少语义损失,以实现更高效的关系抽取。在该研究构建的数据集基础上,将BERT-PCNN-ATT-Jieba模型与经典的卷积神经网络(Convolutional Neural Network,CNN)、PCNN模型、以及结合BERT的CNN、PCNN、PCNN-ATT、PCNN-Jieba等6个模型进行比较,该研究提出的BERT-PCNN-ATT-Jieba模型取得更优的性能,其准确率达到84.72%,召回率达到81.78%,F值达到83.22%。该模型为食品安全领域的知识抽取提供参考,为该领域知识图谱的自动化构建节约了成本,同时为基于该领域知识图谱的知识问答、知识检索、数据共享及食品安全智慧监管等应用提供依据。
关键词
食品安全
模型
关系抽取
知识图谱
注意力机制
BERT
PCNN
Keywords
food safety
models
relationship extraction
knowledge graph
attention mechanism
BERT
PCNN
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
用BERT和改进PCNN模型抽取食品安全领域关系
赵良
张赵玥
廖子逸
王玲
《农业工程学报》
EI
CAS
CSCD
北大核心
2022
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部