为保证生产过程的安全稳定运行,避免因故障导致损失,及时检测出异常工况并对异常工况进行准确诊断十分重要。针对化工过程的复杂性,提出一种并行长短时记忆网络和卷积神经网络(Parallel Long and Short-Term Memory Network and Convolu...为保证生产过程的安全稳定运行,避免因故障导致损失,及时检测出异常工况并对异常工况进行准确诊断十分重要。针对化工过程的复杂性,提出一种并行长短时记忆网络和卷积神经网络(Parallel Long and Short-Term Memory Network and Convolutional Neural Network,PLSTM-CNN)模型进行化工生产过程故障检测。该模型有效结合LSTM对时间序列数据全局特征提取能力和CNN模型善于提取局部特征的能力,减少了特征信息的丢失,实现了较高的故障检测率。采用一维稠密卷积神经网络作为CNN的主体,结合LSTM网络对序列信息变化敏感的特点,在构建更深层网络的同时避免模型过拟合。采用最大互信息(Maximum Mutual Information Coefficient,MMIC)数据预处理方法,提高了数据的局部相关性以及从不同初始条件下PLSTM-CNN模型检测故障的效率。以TE(Tennessee Eastman)过程为研究对象,PLSTM-CNN模型在故障平均检测率和漏报率等指标上明显优于传统循环神经网络。展开更多
提出了一种基于StyleGAN生成器的新型自监督人脸正面化模型(Self-Supervised Face Frontalization Model,SFM),通过改变潜空间编码实现人脸正面化。为了合成质量优异的正面人脸图像,使用对比语言图像预训练(Contrastive Language Image ...提出了一种基于StyleGAN生成器的新型自监督人脸正面化模型(Self-Supervised Face Frontalization Model,SFM),通过改变潜空间编码实现人脸正面化。为了合成质量优异的正面人脸图像,使用对比语言图像预训练(Contrastive Language Image Pretraining,CLIP)模块和自适应增强模块(Adaptive Enhancement Module,AEM)来编辑潜空间,在最大程度上只修改面部姿态而不修改面部的其他特征。研究结果表明,本文方法无需配对人脸数据集训练就能生成质量优且完整的正面人脸图像。在定性和定量实验数据的比较中,本文方法最优。展开更多
基于交替方向乘子法(ADMM)在分布式形式下解决主动配电系统最优潮流问题(OPF),针对分布式算法性能受到配电系统区域划分影响的问题,提出了一种基于量测数据驱动的电网分区方法,以加速优化算法的收敛速度。与传统的ADMM算法依赖于全局信...基于交替方向乘子法(ADMM)在分布式形式下解决主动配电系统最优潮流问题(OPF),针对分布式算法性能受到配电系统区域划分影响的问题,提出了一种基于量测数据驱动的电网分区方法,以加速优化算法的收敛速度。与传统的ADMM算法依赖于全局信息不同,本文引入了一致性方法来协调区域交界的平衡问题,从而实现最优潮流问题的完全分布式求解。此外,本文采用LinDistFlow(Linearized Distribution Flow)交流近似模型来应对配电网最优潮流问题的非凸性挑战。通过在不同规模的IEEE配电网案例上进行测试,验证了所提方法的有效性,且其在优化算法的迭代次数、计算时间和误差精度等性能上均优于其他分区方法。展开更多
文摘为保证生产过程的安全稳定运行,避免因故障导致损失,及时检测出异常工况并对异常工况进行准确诊断十分重要。针对化工过程的复杂性,提出一种并行长短时记忆网络和卷积神经网络(Parallel Long and Short-Term Memory Network and Convolutional Neural Network,PLSTM-CNN)模型进行化工生产过程故障检测。该模型有效结合LSTM对时间序列数据全局特征提取能力和CNN模型善于提取局部特征的能力,减少了特征信息的丢失,实现了较高的故障检测率。采用一维稠密卷积神经网络作为CNN的主体,结合LSTM网络对序列信息变化敏感的特点,在构建更深层网络的同时避免模型过拟合。采用最大互信息(Maximum Mutual Information Coefficient,MMIC)数据预处理方法,提高了数据的局部相关性以及从不同初始条件下PLSTM-CNN模型检测故障的效率。以TE(Tennessee Eastman)过程为研究对象,PLSTM-CNN模型在故障平均检测率和漏报率等指标上明显优于传统循环神经网络。
文摘提出了一种基于StyleGAN生成器的新型自监督人脸正面化模型(Self-Supervised Face Frontalization Model,SFM),通过改变潜空间编码实现人脸正面化。为了合成质量优异的正面人脸图像,使用对比语言图像预训练(Contrastive Language Image Pretraining,CLIP)模块和自适应增强模块(Adaptive Enhancement Module,AEM)来编辑潜空间,在最大程度上只修改面部姿态而不修改面部的其他特征。研究结果表明,本文方法无需配对人脸数据集训练就能生成质量优且完整的正面人脸图像。在定性和定量实验数据的比较中,本文方法最优。
文摘基于交替方向乘子法(ADMM)在分布式形式下解决主动配电系统最优潮流问题(OPF),针对分布式算法性能受到配电系统区域划分影响的问题,提出了一种基于量测数据驱动的电网分区方法,以加速优化算法的收敛速度。与传统的ADMM算法依赖于全局信息不同,本文引入了一致性方法来协调区域交界的平衡问题,从而实现最优潮流问题的完全分布式求解。此外,本文采用LinDistFlow(Linearized Distribution Flow)交流近似模型来应对配电网最优潮流问题的非凸性挑战。通过在不同规模的IEEE配电网案例上进行测试,验证了所提方法的有效性,且其在优化算法的迭代次数、计算时间和误差精度等性能上均优于其他分区方法。