乙烯裂解炉是乙烯生产的核心装置,烃类原料在裂解炉中发生复杂的高温裂解反应,及时识别裂解炉运行工况变化对设备安全高效运行非常重要。裂解炉运行过程中产生大量的过程数据,这些数据通常具有多变量、高维度特性,增加了数据处理和分析...乙烯裂解炉是乙烯生产的核心装置,烃类原料在裂解炉中发生复杂的高温裂解反应,及时识别裂解炉运行工况变化对设备安全高效运行非常重要。裂解炉运行过程中产生大量的过程数据,这些数据通常具有多变量、高维度特性,增加了数据处理和分析的复杂性,如何基于过程数据及时检测乙烯裂解炉工况变化成为亟需解决的问题。借鉴对比学习算法在图片分类中的优秀性能,提出一类基于对比学习的裂解炉运行工况识别方法。首先,将乙烯裂解炉工业数据经归一化后,使用不同长度的时间窗动态提取数据,将其转化为灰度图片。根据图片中的信息,将图片进行数据增强后输入编码器,得到图片的全局语义、类别、内容不变性等特征。将这些特征应用于计算对比学习的损失函数,通过最小化对比损失函数,实现对灰度图片的分类。通过本文方法,可以根据过程数据快速发现工况变化,其分类准确度较通用时间序列表示学习的自监督对比学习(self-supervised contrastive learning for universal time series representation learning,TimesURL)方法有明显提升,可有效实现乙烯裂解炉工况识别。展开更多
传统同时定位与地图构建(simultaneous localization and mapping,SLAM)在弱纹理场景中的鲁棒性差,在动态场景中受动态物体干扰。针对这些问题,提出了动态视觉SLAM。首先,在视觉前端使用几何对应网络2(geometric correspondence network...传统同时定位与地图构建(simultaneous localization and mapping,SLAM)在弱纹理场景中的鲁棒性差,在动态场景中受动态物体干扰。针对这些问题,提出了动态视觉SLAM。首先,在视觉前端使用几何对应网络2(geometric correspondence network version 2,GCNv2)提取特征点并生成二值描述子,提高SLAM在弱纹理场景中的鲁棒性;然后,引入目标检测网络对动态物体进行检测,获取当前帧的语义信息,结合多视图几何剔除动态物体,去除动态物体对SLAM的干扰。实验结果表明:在弱纹理场景中,所提方法可以持续提取足够数量的高质量特征点;在存在动态物体干扰的场景中,所提方法的绝对位姿误差和相对位姿误差较小;在静态场景中,所提方法的性能仍然较优。展开更多
文摘乙烯裂解炉是乙烯生产的核心装置,烃类原料在裂解炉中发生复杂的高温裂解反应,及时识别裂解炉运行工况变化对设备安全高效运行非常重要。裂解炉运行过程中产生大量的过程数据,这些数据通常具有多变量、高维度特性,增加了数据处理和分析的复杂性,如何基于过程数据及时检测乙烯裂解炉工况变化成为亟需解决的问题。借鉴对比学习算法在图片分类中的优秀性能,提出一类基于对比学习的裂解炉运行工况识别方法。首先,将乙烯裂解炉工业数据经归一化后,使用不同长度的时间窗动态提取数据,将其转化为灰度图片。根据图片中的信息,将图片进行数据增强后输入编码器,得到图片的全局语义、类别、内容不变性等特征。将这些特征应用于计算对比学习的损失函数,通过最小化对比损失函数,实现对灰度图片的分类。通过本文方法,可以根据过程数据快速发现工况变化,其分类准确度较通用时间序列表示学习的自监督对比学习(self-supervised contrastive learning for universal time series representation learning,TimesURL)方法有明显提升,可有效实现乙烯裂解炉工况识别。
文摘传统同时定位与地图构建(simultaneous localization and mapping,SLAM)在弱纹理场景中的鲁棒性差,在动态场景中受动态物体干扰。针对这些问题,提出了动态视觉SLAM。首先,在视觉前端使用几何对应网络2(geometric correspondence network version 2,GCNv2)提取特征点并生成二值描述子,提高SLAM在弱纹理场景中的鲁棒性;然后,引入目标检测网络对动态物体进行检测,获取当前帧的语义信息,结合多视图几何剔除动态物体,去除动态物体对SLAM的干扰。实验结果表明:在弱纹理场景中,所提方法可以持续提取足够数量的高质量特征点;在存在动态物体干扰的场景中,所提方法的绝对位姿误差和相对位姿误差较小;在静态场景中,所提方法的性能仍然较优。