传统教育大数据管理面临隐私数据泄露、数据可信度存疑和越权访问等安全风险,为了避免上述风险,提出了一种新型基于智能合约的教育大数据安全管理与隐私保护算法:ASPES(algorithm for security management and privacy protection of ed...传统教育大数据管理面临隐私数据泄露、数据可信度存疑和越权访问等安全风险,为了避免上述风险,提出了一种新型基于智能合约的教育大数据安全管理与隐私保护算法:ASPES(algorithm for security management and privacy protection of education big data based on smart contracts),算法融合了基于Shamir秘密共享的密钥切割改进分享算法、基于SM2-SHA256-AES算法的混合加密算法和基于分层数据访问控制的智能合约管理算法.在真实数据集MOOCCube上的实验结果表明,相较于较先进的方法,ASPES的执行效率和安全性有显著提高,可以有效存储和管理教育大数据,实现教育资源的合理分配.ASPES通过向区块链中嵌入智能合约,将数据读写等操作上链,能够优化管理路径、提高管理效率,保证教育公平,极大地提升教育质量.展开更多
开源软件在大规模发展与普及的同时也构筑了一个开源开发与协同的生态系统,在这个系统中,个人与组织协同开发所有人都可以使用的高质量软件。以GitHub为代表的社会化协作平台进一步促进了大规模、分布式、细粒度的代码协作与技术社交,...开源软件在大规模发展与普及的同时也构筑了一个开源开发与协同的生态系统,在这个系统中,个人与组织协同开发所有人都可以使用的高质量软件。以GitHub为代表的社会化协作平台进一步促进了大规模、分布式、细粒度的代码协作与技术社交,无数开发者每天在其上提交代码、评审代码、报告bug,或提出新的功能请求,如何利用这些海量的协作行为数据挖掘有价值的信息是当前的研究难点。因此,设计并实现了一个面向开源协作数字生态的一站式数据挖掘系统OpenDigger,目标是构建开源领域的数据基础设施,促进开源生态的持续发展。OpenDigger系统主要由数据采集服务、数据存储模块、标签数据模块和信息服务模块构成,它基于OLAP列式数据库和图数据库,持续采集多源开源生态数据,并通过统一的接口为不同用户群体提供各类开源信息服务。OpenDigger从协作关系网络视角挖掘开源数字生态中的关键信息,相比传统统计指标,协作网络视角更好地展现了开源项目与开发者的关联特性,用户可以使用在线分析环境或CLI工具对开源生态数据进行建模与分析。OpenDigger服务于蚂蚁金服、阿里巴巴、木兰开源社区等多家企业与社区,为OSPO(Open Source Program Office,开源办公室)从业者和开源项目运营负责人提供开源数字洞察能力。展开更多
面向开源项目推荐开发人员对开源生态建设具有重要意义。区别于传统软件开发,开源领域的开发者、项目、组织及相互关系体现了开放式协作项目的特点,而它们蕴含的语义有助于精准推荐开源项目的开发者。因此,提出一种基于协作贡献网络(CCN...面向开源项目推荐开发人员对开源生态建设具有重要意义。区别于传统软件开发,开源领域的开发者、项目、组织及相互关系体现了开放式协作项目的特点,而它们蕴含的语义有助于精准推荐开源项目的开发者。因此,提出一种基于协作贡献网络(CCN)的开发者推荐(DRCCN)方法。首先,利用开源软件(OSS)开发者、OSS项目、OSS组织之间的贡献关系构建CCN;其次,基于CCN构建一个3层深度的异构GraphSAGE(Graph SAmple and aggreGatE)图神经网络(GNN)模型,预测开发者节点和开源项目节点之间的链接,从而产生相应的嵌入对;最后,根据预测结果,采用K最近邻(KNN)算法完成开发者推荐。在GitHub数据集上训练和测试模型的实验结果表明,相较于序列推荐的对比学习模型CL4SRec(Contrastive Learning for Sequential Recommendation),DRCCN在精确率、召回率和F1值这3个指标上分别提升了约10.7%、2.6%和4.2%。因此,所提模型可以为开源社区项目的开发者推荐提供重要的参考依据。展开更多
近年来,如何合理有效地在区块链上实现用户隐私数据保护是区块链技术领域的一个关键性问题.针对此问题,设计出一种基于Pedersen承诺与Schnorr协议的安全多方计算协议(protocol of blockchain based on Pedersen commitment linked Schno...近年来,如何合理有效地在区块链上实现用户隐私数据保护是区块链技术领域的一个关键性问题.针对此问题,设计出一种基于Pedersen承诺与Schnorr协议的安全多方计算协议(protocol of blockchain based on Pedersen commitment linked Schnorr protocol for multi-party computation,BPLSM).通过构筑该协议架构并进行形式化证明演算,表明了该协议能够融入区块链网络、能够在匿名情况下合并不同隐私消息并进行高效签署的特点.此外分析了协议的性质与安全性,证明了在区块链中应用BPLSM协议的泛用型隐私计算方案计算上的低算力开销,并具备良好的信息隐蔽性.最后对协议进行实验仿真,结果表明:在小范围人数固定的多方计算中,BPLSM协议验签的时间成本比当前主流的BLS签名节省约83.5%.展开更多
文摘传统教育大数据管理面临隐私数据泄露、数据可信度存疑和越权访问等安全风险,为了避免上述风险,提出了一种新型基于智能合约的教育大数据安全管理与隐私保护算法:ASPES(algorithm for security management and privacy protection of education big data based on smart contracts),算法融合了基于Shamir秘密共享的密钥切割改进分享算法、基于SM2-SHA256-AES算法的混合加密算法和基于分层数据访问控制的智能合约管理算法.在真实数据集MOOCCube上的实验结果表明,相较于较先进的方法,ASPES的执行效率和安全性有显著提高,可以有效存储和管理教育大数据,实现教育资源的合理分配.ASPES通过向区块链中嵌入智能合约,将数据读写等操作上链,能够优化管理路径、提高管理效率,保证教育公平,极大地提升教育质量.
文摘开源软件在大规模发展与普及的同时也构筑了一个开源开发与协同的生态系统,在这个系统中,个人与组织协同开发所有人都可以使用的高质量软件。以GitHub为代表的社会化协作平台进一步促进了大规模、分布式、细粒度的代码协作与技术社交,无数开发者每天在其上提交代码、评审代码、报告bug,或提出新的功能请求,如何利用这些海量的协作行为数据挖掘有价值的信息是当前的研究难点。因此,设计并实现了一个面向开源协作数字生态的一站式数据挖掘系统OpenDigger,目标是构建开源领域的数据基础设施,促进开源生态的持续发展。OpenDigger系统主要由数据采集服务、数据存储模块、标签数据模块和信息服务模块构成,它基于OLAP列式数据库和图数据库,持续采集多源开源生态数据,并通过统一的接口为不同用户群体提供各类开源信息服务。OpenDigger从协作关系网络视角挖掘开源数字生态中的关键信息,相比传统统计指标,协作网络视角更好地展现了开源项目与开发者的关联特性,用户可以使用在线分析环境或CLI工具对开源生态数据进行建模与分析。OpenDigger服务于蚂蚁金服、阿里巴巴、木兰开源社区等多家企业与社区,为OSPO(Open Source Program Office,开源办公室)从业者和开源项目运营负责人提供开源数字洞察能力。
文摘面向开源项目推荐开发人员对开源生态建设具有重要意义。区别于传统软件开发,开源领域的开发者、项目、组织及相互关系体现了开放式协作项目的特点,而它们蕴含的语义有助于精准推荐开源项目的开发者。因此,提出一种基于协作贡献网络(CCN)的开发者推荐(DRCCN)方法。首先,利用开源软件(OSS)开发者、OSS项目、OSS组织之间的贡献关系构建CCN;其次,基于CCN构建一个3层深度的异构GraphSAGE(Graph SAmple and aggreGatE)图神经网络(GNN)模型,预测开发者节点和开源项目节点之间的链接,从而产生相应的嵌入对;最后,根据预测结果,采用K最近邻(KNN)算法完成开发者推荐。在GitHub数据集上训练和测试模型的实验结果表明,相较于序列推荐的对比学习模型CL4SRec(Contrastive Learning for Sequential Recommendation),DRCCN在精确率、召回率和F1值这3个指标上分别提升了约10.7%、2.6%和4.2%。因此,所提模型可以为开源社区项目的开发者推荐提供重要的参考依据。
文摘近年来,如何合理有效地在区块链上实现用户隐私数据保护是区块链技术领域的一个关键性问题.针对此问题,设计出一种基于Pedersen承诺与Schnorr协议的安全多方计算协议(protocol of blockchain based on Pedersen commitment linked Schnorr protocol for multi-party computation,BPLSM).通过构筑该协议架构并进行形式化证明演算,表明了该协议能够融入区块链网络、能够在匿名情况下合并不同隐私消息并进行高效签署的特点.此外分析了协议的性质与安全性,证明了在区块链中应用BPLSM协议的泛用型隐私计算方案计算上的低算力开销,并具备良好的信息隐蔽性.最后对协议进行实验仿真,结果表明:在小范围人数固定的多方计算中,BPLSM协议验签的时间成本比当前主流的BLS签名节省约83.5%.