期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于高光谱成像技术的涌泉蜜桔糖度最优检测位置 被引量:3
1
作者 李斌 万霞 +4 位作者 刘爱伦 邹吉平 卢英俊 姚迟 刘燕德 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第1期128-139,共12页
本文旨在探索涌泉蜜桔糖度的最优检测位置和最佳预测模型,以便为蜜桔糖度检测分级提供理论依据。本文利用波长为390.2~981.3 nm的高光谱成像系统对涌泉蜜桔糖度最佳检测位置进行研究,将涌泉蜜桔的花萼、果茎、赤道和全局的光谱信息与其... 本文旨在探索涌泉蜜桔糖度的最优检测位置和最佳预测模型,以便为蜜桔糖度检测分级提供理论依据。本文利用波长为390.2~981.3 nm的高光谱成像系统对涌泉蜜桔糖度最佳检测位置进行研究,将涌泉蜜桔的花萼、果茎、赤道和全局的光谱信息与其对应部位的糖度结合,建立其预测模型。使用标准正态变量变换(SNV)、多元散射校正(MSC)、基线校准(Baseline)和SG平滑(Savitzkv-Golay)4种预处理方法对不同部位的原始光谱进行预处理,用预处理后的光谱数据建立偏最小二乘回归(PLSR)和最小二乘支持向量机(LSSVM)模型。找出蜜桔不同部位的最佳预处理方式,对经过最佳预处理后的光谱数据采用竞争性自适应重加权算法(CARS)和无信息变量消除法(UVE)进行特征波长筛选。最后,用筛选后的光谱数据建立PLSR和LSSVM模型并进行分析比较。研究结果表明,全局的MSC-CARS-LSSVM模型预测效果最佳,其预测集相关系数Rp=0.955,均方根误差RMSEP=0.395,其次是蜜桔赤道部位的SNV-PLSR模型,其预测集相关系数Rp=0.936,均方根误差RMSEP=0.37。两者预测集相关系数相近,因此可将赤道位置作为蜜桔糖度的最优检测位置。本研究表明根据蜜桔不同部位建立的糖度预测模型的预测效果有所差异,研究最优检测位置和最佳预测模型可以为蜜桔进行糖度检测分级提供理论依据。 展开更多
关键词 涌泉蜜桔 高光谱 糖度 偏最小二乘回归 最小二乘支持向量机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部