期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
融合Dead-ends和离线监督Actor-Critic的动态治疗策略生成模型
1
作者 杨莎莎 于亚新 +3 位作者 王跃茹 许晶铭 魏阳杰 李新华 《计算机科学》 CSCD 北大核心 2024年第7期80-88,共9页
强化学习对数学模型依赖性低,利用经验便于架构和优化模型,非常适合用于动态治疗策略学习。但现有研究仍存在以下问题:1)学习策略最优性的同时未考虑风险,导致学到的策略存在一定的风险;2)忽略了分布偏移问题,导致学到的策略与医生策略... 强化学习对数学模型依赖性低,利用经验便于架构和优化模型,非常适合用于动态治疗策略学习。但现有研究仍存在以下问题:1)学习策略最优性的同时未考虑风险,导致学到的策略存在一定的风险;2)忽略了分布偏移问题,导致学到的策略与医生策略完全不同;3)忽略患者的历史观测数据和治疗史,从而不能很好地得到患者状态,进而导致不能学到最优策略。基于此,提出了融合Dead-ends和离线监督Actor-Critic的动态治疗策略生成模型DOSAC-DTR。首先,考虑学到的策略所推荐的治疗行动的风险性,在Actor-Critic框架中融入Dead-ends概念;其次,为缓解分布偏移问题,在Actor-Critic框架中融入医生监督,在最大化预期回报的同时,最小化所学策略与医生策略之间的差距;最后,为了得到包含患者关键历史信息的状态表示,使用基于LSTM的编码器解码器模型对患者的历史观测数据和治疗史进行建模。实验结果表明,DOSAC-DTR相比基线方法有更好的性能,可以得到更低的估计死亡率以及更高的Jaccard系数。 展开更多
关键词 动态治疗策略 Dead-ends Actor-Critic 状态表征
在线阅读 下载PDF
Twitter社交网络用户行为理解及个性化服务推荐算法研究 被引量:16
2
作者 于亚新 刘梦 张宏宇 《计算机研究与发展》 EI CSCD 北大核心 2020年第7期1369-1380,共12页
随着社交网迅速发展,产生了大量带有时空信息的短文本数据.这些短文本数据因其文本长度过短且所带地理位置信息过于稀疏导致用户行为主题难于捕捉.此外,由于目前大多数用户行为理解相关研究工作缺少对行为要素间依赖关系的适度融合,因... 随着社交网迅速发展,产生了大量带有时空信息的短文本数据.这些短文本数据因其文本长度过短且所带地理位置信息过于稀疏导致用户行为主题难于捕捉.此外,由于目前大多数用户行为理解相关研究工作缺少对行为要素间依赖关系的适度融合,因而造成行为理解具有片面性.基于此,首先提出2种综合考虑用户行为发生时间、活动内容、活动区域的用户时间活动模型(user-time-activity model,UTAM)和用户时间区域模型(user-time-region model,UTRM),用于深刻理解用户行为规律;然后利用LDA(latent Dirichlet allocation)技术,抽取用户活动服务主题,提出活动服务主题模型(activity-to-service topic model,ASTM),用于挖掘活动和服务间的对应关系;最后将服务地点属性内耦合性纳入考虑,提出了基于耦合和距离的矩阵分解(matrix factorization based on couple&distance,MFCD)算法,用于提高推荐质量.为验证所提模型和算法的有效性,在真实Twitter数据集上进行了扩展性实验,结果表明:所提模型对提高个性化服务推荐质量是有效的,MFCD算法对于用户的行为理解效果也优于传统矩阵分解算法. 展开更多
关键词 行为理解 主题模型 个性化服务推荐 矩阵分解 非独立同分布 耦合相似性
在线阅读 下载PDF
基于超图的EBSN个性化推荐及优化算法 被引量:7
3
作者 于亚新 张文超 +1 位作者 李振国 李莹 《计算机研究与发展》 EI CSCD 北大核心 2020年第12期2556-2570,共15页
基于事件的社交网(event-based social networks,EBSN)中的个性化推荐服务是一个十分重要且颇具应用价值的问题,现有研究工作主要基于普通图来对EBSN中的关系进行建模,但由于EBSN是一种异构型复杂社交网络,具有多种不同类型实体,因而用... 基于事件的社交网(event-based social networks,EBSN)中的个性化推荐服务是一个十分重要且颇具应用价值的问题,现有研究工作主要基于普通图来对EBSN中的关系进行建模,但由于EBSN是一种异构型复杂社交网络,具有多种不同类型实体,因而用普通图建模EBSN会存在高维信息丢失问题,导致推荐质量降低.基于此,首先提出一种基于超图模型的EBSN个性化推荐(hypergraph-based personalized recommendation in EBSN,PRH)算法,其基本思想在于利用超图具有不丢失高维数据信息之特点来更准确地对EBSN中复杂社交关系数据进行高维建模,并利用流形排序正则化计算获取初步推荐结果.其次,又分别从查询向量设置方式改进和对不同类超边施以不同权重等角度,提出了优化的PRH(optimized PRH,oPRH)算法以进一步优化PRH算法所获推荐结果,从而实现精准推荐.扩展实验表明,基于超图的EBSN个性化推荐及其优化算法,推荐结果相比于以前基于普通图的推荐算法具有更高准确性. 展开更多
关键词 基于事件的社交网 超图 流形排序 正则化运算 精准个性化推荐 优化
在线阅读 下载PDF
ROS2多线程执行器上DAG任务的优先级分配方法 被引量:2
4
作者 纪东 魏阳杰 +1 位作者 李宇溪 王义 《计算机研究与发展》 EI CSCD 北大核心 2023年第5期1086-1098,共13页
随着机器人操作系统(robot operating system, ROS)的日益普及,系统也变得更加复杂,这类系统的计算平台正逐渐转变为多核心平台.在ROS中,任务执行的顺序取决于底层任务调度策略和分配给任务的优先级,而最大限度地缩短所有任务的执行时... 随着机器人操作系统(robot operating system, ROS)的日益普及,系统也变得更加复杂,这类系统的计算平台正逐渐转变为多核心平台.在ROS中,任务执行的顺序取决于底层任务调度策略和分配给任务的优先级,而最大限度地缩短所有任务的执行时间是并行系统任务调度的一个重要目标.受强化学习在解决各种组合优化问题的最新研究成果的启发,在考虑ROS2多线程执行器的调度机制和执行约束的前提下,提出了一种基于强化学习的任务优先级分配方法,该方法提取了基于有向无环图形式表示的任务集的时间和结构特征,通过策略梯度和蒙特卡洛树搜索(Monte Carlo tree search, MCTS)方法有效地学习ROS2调度策略并给出合理的优先级设置方案,最终达到最小化并行任务的最大完工时间的目的.通过模拟平台环境下随机生成的任务图以评估所提方法,结果表明所提方法明显优于基准方法.作为一种离线分析方法,所提方法可以很容易地扩展到复杂的ROS中,在可接受的时间内找到接近最优的解决方案. 展开更多
关键词 机器人操作系统 强化学习 DAG任务 优先级分配 蒙特卡洛树搜索
在线阅读 下载PDF
图卷积增强多路解码的实体关系联合抽取模型 被引量:9
5
作者 乔勇鹏 于亚新 +3 位作者 刘树越 王子腾 夏子芳 乔佳琪 《计算机研究与发展》 EI CSCD 北大核心 2023年第1期153-166,共14页
从无结构化自然语言文本中抽取实体关系三元组是构建大型知识图谱中最为关键的一步,但现有研究仍存在3方面问题:1)忽略文本中因多个三元组共享同一实体而产生的实体关系重叠问题;2)当前以编码器-解码器为基础的联合抽取模型未充分考虑... 从无结构化自然语言文本中抽取实体关系三元组是构建大型知识图谱中最为关键的一步,但现有研究仍存在3方面问题:1)忽略文本中因多个三元组共享同一实体而产生的实体关系重叠问题;2)当前以编码器-解码器为基础的联合抽取模型未充分考虑文本语句词之间的依赖关系;3)部分三元组序列过长导致误差累积与传播,影响实体关系抽取的精度和效率.基于此,提出基于图卷积增强多路解码的实体关系联合抽取模型(graph convolution-enhanced multi-channel decoding joint entity and relation extraction model,GMCD-JERE).首先,基于BiLSTM作为模型编码器,强化文本中词的双向特征融合;其次,通过图卷积多跳特征融合句中词之间的依赖关系,提高关系抽取准确性;此外,改进传统模型按三元组先后顺序的解码机制,通过多路解码三元组机制,解决实体关系重叠问题,同时缓解三元组序列过长造成误差累积、传播的影响;最后,实验选用当前3个主流模型进行性能验证,在NYT(New York times)数据集上结果表明在精确率、召回率和F1这3个指标上分别提升了4.3%,5.1%,4.8%,同时在WebNLG(Web natural language generation)数据集上验证以关系为开始的抽取顺序. 展开更多
关键词 关系抽取 编码器–解码器 多路解码 关系重叠 图卷积神经网络
在线阅读 下载PDF
融合协同知识图谱与反事实推理的可解释推荐机制 被引量:4
6
作者 夏子芳 于亚新 +1 位作者 王子腾 乔佳琪 《计算机应用》 CSCD 北大核心 2023年第7期2001-2009,共9页
为构建透明可信的推荐机制,相关研究工作主要通过可解释推荐机制为个性化推荐提供合理解释,然而现有可解释推荐机制存在三大局限:1)利用相关关系只能提供合理化解释而非因果解释,而利用路径提供解释存在隐私泄露问题;2)忽略了用户反馈... 为构建透明可信的推荐机制,相关研究工作主要通过可解释推荐机制为个性化推荐提供合理解释,然而现有可解释推荐机制存在三大局限:1)利用相关关系只能提供合理化解释而非因果解释,而利用路径提供解释存在隐私泄露问题;2)忽略了用户反馈稀疏的问题,解释的保真度难以保证;3)解释粒度较粗,未考虑用户个性化偏好。为解决上述问题,提出基于协同知识图谱(CKG)与反事实推理的可解释推荐机制(ERCKCI)。首先,基于用户自身的行为序列,采用反事实推理思想利用因果关系实现高稀疏度因果去相关,并迭代推导出反事实解释;其次,为提升解释保真度,不仅在单时间片上利用CKG和图神经网络(GNN)的邻域传播机制学习用户和项目表征,还在多时间片上通过自注意力机制捕获用户长短期偏好以增强用户偏好表征;最后,基于反事实集的高阶连通子图捕获用户的多粒度个性化偏好,从而增强反事实解释。为验证ERCKCI机制的有效性,在公开数据集MovieLens(100k)、Book-crossing和MovieLens(1M)上进行了对比实验。所得结果表明,该机制在前两个数据集上相较于RCF(Relational Collaborative Filtering)推荐模型下的ECI(Explainable recommendation based on Counterfactual Inference),在解释保真度上分别提升了4.89和3.38个百分点,在CF集大小上分别降低了63.26%、66.24%,在稀疏度指标上分别提升了1.10和1.66个百分点,可见该机制能有效提升可解释性。 展开更多
关键词 可解释 反事实推理 协同知识图谱 图神经网络 推荐机制
在线阅读 下载PDF
Elsa:一种面向跨区域架构的无协调分布式键值存储系统 被引量:2
7
作者 崔玉龙 付国 +1 位作者 张岩峰 于戈 《软件学报》 EI CSCD 北大核心 2023年第5期2427-2445,共19页
作为具备高性能和高可伸缩性的分布式存储解决方案,键值存储系统近年来被广泛采用,例如Redis、MongoDB、Cassandra等.分布式存储系统中广泛使用的多副本机制一方面提高了系统吞吐量和可靠性,但同时也增加了系统协调和副本一致性的额外开... 作为具备高性能和高可伸缩性的分布式存储解决方案,键值存储系统近年来被广泛采用,例如Redis、MongoDB、Cassandra等.分布式存储系统中广泛使用的多副本机制一方面提高了系统吞吐量和可靠性,但同时也增加了系统协调和副本一致性的额外开销.对于跨域分布式系统来说,远距离的副本协调开销甚至可能成为系统的性能瓶颈,降低系统的可用性和吞吐量.提出分布式键值存储系统Elsa,这是一种面向跨区域架构的无协调键值存储系统.Elsa在保证高性能和高可拓展性的基础上,采用无冲突备份数据结构(CRDT)技术来无协调的保证副本间的强最终一致性,降低了系统节点间的协调开销.在阿里云上构建了跨4数据中心8节点的跨区域分布式环境,进行了大规模分布式性能对比实验,实验结果表明:在跨域的分布式环境下,对于高并发争用的负载,Elsa系统的性能具备明显的优势,最高达到MongoDB集群的7.37倍,Cassandra集群的1.62倍. 展开更多
关键词 跨区域架构 键值存储系统 无冲突备份数据结构 副本一致性 强最终一致性
在线阅读 下载PDF
基于Matrix Profile的时间序列分割技术改进
8
作者 刘贺贺 贺延俏 +2 位作者 邓诗卓 吴刚 王波涛 《软件学报》 EI CSCD 北大核心 2023年第11期5267-5281,共15页
时间序列分割是数据挖掘领域中的一个重要研究方向.目前基于矩阵轮廓(matrix profile,MP)的时间序列分割技术得到了越来越多研究人员的关注,并且取得了不错的研究成果.不过该技术及其衍生算法仍然存在不足:首先,基于矩阵轮廓的快速低代... 时间序列分割是数据挖掘领域中的一个重要研究方向.目前基于矩阵轮廓(matrix profile,MP)的时间序列分割技术得到了越来越多研究人员的关注,并且取得了不错的研究成果.不过该技术及其衍生算法仍然存在不足:首先,基于矩阵轮廓的快速低代价语义分割算法中对给定活动状态的时间序列分割时,最近邻之间通过弧进行连接,会出现弧跨越非目标活动状态匹配相似子序列问题;其次,现有提取分割点算法在提取分割点时采用给定长度窗口,容易得到与真实值偏差较大的分割点,降低准确性.针对以上问题,提出一种限制弧跨越的时间序列分割算法(limit arc curve cross-FLOSS,LAC-FLOSS),该算法给弧添加权重,形成一种带权弧,并通过设置匹配距离阈值解决弧的跨状态子序列误匹配问题.此外,提出一种改进的提取分割点算法(improved extract regimes,IER),它通过纠正弧跨越(corrected arc crossings,CAC)序列的形状特性,从波谷中提取极值,避免直接使用窗口在非拐点处取到分割点的问题.在公开数据集datasets_seg和MobiAct上面进行对比实验,验证以上两种解决方案的可行性和有效性. 展开更多
关键词 活动分割 可穿戴传感器 矩阵轮廓 带权弧
在线阅读 下载PDF
融合好奇心和策略蒸馏的稀疏奖励探索机制
9
作者 王子腾 于亚新 +1 位作者 夏子芳 乔佳琪 《计算机应用》 CSCD 北大核心 2023年第7期2082-2090,共9页
深度强化学习算法在奖励稀疏的环境下,难以通过与环境的交互学习到最优策略,因此需要构建内在奖励指导策略进行探索更新。然而,这样仍存在一些问题:1)状态分类存在的统计失准问题会造成奖励值大小被误判,使智能体(agent)学习到错误行为... 深度强化学习算法在奖励稀疏的环境下,难以通过与环境的交互学习到最优策略,因此需要构建内在奖励指导策略进行探索更新。然而,这样仍存在一些问题:1)状态分类存在的统计失准问题会造成奖励值大小被误判,使智能体(agent)学习到错误行为;2)由于预测网络识别状态信息的能力较强,内在奖励产生状态的新鲜感下降,影响了最优策略的学习效果;3)由于随机状态转移,教师策略的信息未被有效利用,降低了智能体的环境探索能力。为了解决以上问题,提出一种融合随机生成网络预测误差与哈希离散化统计的奖励构建机制RGNP-HCE(Randomly Generated Network Prediction and Hash Count Exploration),并通过蒸馏(distillation)将多教师策略的知识迁移到学生策略中。RGNP-HCE机制采用好奇心分类思想构建融合奖励:一方面在多回合间以随机生成网络预测差构建全局好奇心奖励;另一方面在单回合内以哈希离散化统计构建局部好奇心奖励,从而保证内在奖励的合理性以及策略梯度更新的正确性。此外,将多个教师策略学习到的知识通过蒸馏迁移到学生策略中,有效提升学生策略的环境探索能力。最后,在Montezuma’s Revenge与Breakout测试环境中,把所提机制与当前主流的4个深度强化学习算法进行了对比实验,并执行了策略蒸馏。结果表明,相较于当前高性能的强化学习算法,RGNP-HCE机制在两个测试环境中的平均性能均有提升,且蒸馏后学生策略的平均性能又有进一步的提升,验证了RGNP-HCE机制与策略蒸馏方法对提升智能体的环境探索能力是有效的。 展开更多
关键词 奖励稀疏 内在奖励 探索能力 策略蒸馏 深度强化学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部