期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MeAEG-Net的异常流量检测方法研究 被引量:2
1
作者 黎文伟 岳子乔 王涛 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第2期63-73,共11页
异常流量检测现有方法大都是基于有监督的学习,在现实生活中获取并标记异常流量数据样本是极为困难的,存在诸多限制.此外,由于网络异常数据的多样性和复杂性,各种检测方法的自适应性较差,对新出现的异常流量难以判断.针对上述问题,本文... 异常流量检测现有方法大都是基于有监督的学习,在现实生活中获取并标记异常流量数据样本是极为困难的,存在诸多限制.此外,由于网络异常数据的多样性和复杂性,各种检测方法的自适应性较差,对新出现的异常流量难以判断.针对上述问题,本文设计了一个基于生成对抗网络和记忆增强模块的半监督异常流量检测框架MeAEG-Net(Memory Augment Based on Generative Adversarial Network),通过只训练正常流量样本数据,比较生成器模块输入流量底层特征的重构误差来达到检测异常的目的 .在模型中使用生成对抗网络来更好地训练生成器,生成器采用自编码器加解码器的结构来解决自编码器易受噪声影响的问题,并在自编码器子网络中添加记忆增强模块来削弱生成器模块的泛化能力,增大异常流量的重构误差.实验证明,本文提出的方法能在只学习正常流量数据样本的前提下达到很好的异常流量检测效果. 展开更多
关键词 异常流量检测 生成对抗网络 记忆增强模块 重构误差 半监督学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部