为提升弹载成像制导中运动模糊图像目标检测的精确性与效率,提出一种轻量化且高效的运动模糊图像目标检测(Lighter and More Effective Motion-blurred Image Object Detection,LEMBD)网络。通过深入分析运动模糊图像的成因,基于成像机...为提升弹载成像制导中运动模糊图像目标检测的精确性与效率,提出一种轻量化且高效的运动模糊图像目标检测(Lighter and More Effective Motion-blurred Image Object Detection,LEMBD)网络。通过深入分析运动模糊图像的成因,基于成像机理构建了专用的运动模糊图像数据集。在不增加网络参数的前提下,采用共享权重的孪生网络设计,并引入先验知识,将清晰图像的特征学习用于模糊图像的特征提取,以同时实现对清晰与模糊图像的精准检测。此外,设计了部分深度可分离卷积替代普通卷积,显著减少了网络的参数量与计算量,并提升了学习性能。为进一步优化特征融合质量,提出跨层路径聚合特征金字塔网络,有效利用低级特征的细节信息和高级特征的语义信息。实验结果表明,所提LEMBD网络在运动模糊图像目标检测任务中的性能优于传统目标检测方法和主流运动模糊检测算法,能够为精确制导任务提供更精准的目标相对位置信息。展开更多
稀疏采样与图像复原相结合不但可以压缩数据容量,而且还可以提高成像速度,对于发展高分辨率激光雷达成像技术具有重要意义。为了改善稀疏采样图像的复原效果,本文设计了一种新的残差通道注意力机制网络块,并将残差通道注意力机制引入到...稀疏采样与图像复原相结合不但可以压缩数据容量,而且还可以提高成像速度,对于发展高分辨率激光雷达成像技术具有重要意义。为了改善稀疏采样图像的复原效果,本文设计了一种新的残差通道注意力机制网络块,并将残差通道注意力机制引入到基于压缩感知迭代软阈值方法的深度展开网络中,抑制图像复原重建中因缺失高频信息而导致的模糊现象,形成了一种新的激光雷达稀疏采样图像的复原重建方法。该方法结合了传统压缩感知重建方法和神经网络方法的优势,与传统压缩感知重建方法相比,具有更快的重建速度;与现有神经网络方法相比,增强了结构洞察力,改进了重建图像模糊问题。以Middlebury Stereo Data 2006为测试数据集的验证计算表明,本文提出的方法与SDA、ReconNet、TVAL3、D-AMP和IRCNN等方法相比不但具有更好的图像重建质量,而且具有较高的计算效率;当稀疏采样比率为25%时,复原后图像的峰值信噪比要比其他方法高1.6 d B以上,是一种综合性能较理想的激光雷达稀疏图像复原方法。展开更多
文摘为提升弹载成像制导中运动模糊图像目标检测的精确性与效率,提出一种轻量化且高效的运动模糊图像目标检测(Lighter and More Effective Motion-blurred Image Object Detection,LEMBD)网络。通过深入分析运动模糊图像的成因,基于成像机理构建了专用的运动模糊图像数据集。在不增加网络参数的前提下,采用共享权重的孪生网络设计,并引入先验知识,将清晰图像的特征学习用于模糊图像的特征提取,以同时实现对清晰与模糊图像的精准检测。此外,设计了部分深度可分离卷积替代普通卷积,显著减少了网络的参数量与计算量,并提升了学习性能。为进一步优化特征融合质量,提出跨层路径聚合特征金字塔网络,有效利用低级特征的细节信息和高级特征的语义信息。实验结果表明,所提LEMBD网络在运动模糊图像目标检测任务中的性能优于传统目标检测方法和主流运动模糊检测算法,能够为精确制导任务提供更精准的目标相对位置信息。
文摘稀疏采样与图像复原相结合不但可以压缩数据容量,而且还可以提高成像速度,对于发展高分辨率激光雷达成像技术具有重要意义。为了改善稀疏采样图像的复原效果,本文设计了一种新的残差通道注意力机制网络块,并将残差通道注意力机制引入到基于压缩感知迭代软阈值方法的深度展开网络中,抑制图像复原重建中因缺失高频信息而导致的模糊现象,形成了一种新的激光雷达稀疏采样图像的复原重建方法。该方法结合了传统压缩感知重建方法和神经网络方法的优势,与传统压缩感知重建方法相比,具有更快的重建速度;与现有神经网络方法相比,增强了结构洞察力,改进了重建图像模糊问题。以Middlebury Stereo Data 2006为测试数据集的验证计算表明,本文提出的方法与SDA、ReconNet、TVAL3、D-AMP和IRCNN等方法相比不但具有更好的图像重建质量,而且具有较高的计算效率;当稀疏采样比率为25%时,复原后图像的峰值信噪比要比其他方法高1.6 d B以上,是一种综合性能较理想的激光雷达稀疏图像复原方法。