在基于Retinex分解的低照度图像增强算法中,通过同时估计反射层和亮度层进行反射层恢复是一种流行且有效的方法,但算法结构较为复杂,实现难度大。这是因为恢复反射率是一个约束优化问题,不能用简单的优化技术来解决。本文提出了一种细...在基于Retinex分解的低照度图像增强算法中,通过同时估计反射层和亮度层进行反射层恢复是一种流行且有效的方法,但算法结构较为复杂,实现难度大。这是因为恢复反射率是一个约束优化问题,不能用简单的优化技术来解决。本文提出了一种细节显著性估计方法,可以利用简单的梯度下降优化技术从图像中恢复出反射层。该方法是基于我们所提出假设——暗区域近似(dark region approximation,DRA):由于低照度图像暗区域中的光照很弱,因此将其忽略不计,即将输入图像中暗区域的灰度分布直接近似为反射层。首先利用高斯场准则构建目标函数,通过基于DRA的Retinex模型估计细节显著层;然后用拟牛顿法求解该无约束优化问题;最后,从细节显著层中恢复出反射层作为最终增强结果。实验结果表明,与现有同类方法相比,我们的方法在增强效果和计算效率方面都具有优势。展开更多
碘化铯膜层对紫外光以及X射线具有很高的光电转换效率,但在空气中容易发生潮解。介绍了微通道板碘化铯膜层抗潮解超薄保护膜层的制备与保护效果。使用扫描式电子显微镜(scanning electron microscope,SEM)对碘化铯薄膜光阴极微通道板的...碘化铯膜层对紫外光以及X射线具有很高的光电转换效率,但在空气中容易发生潮解。介绍了微通道板碘化铯膜层抗潮解超薄保护膜层的制备与保护效果。使用扫描式电子显微镜(scanning electron microscope,SEM)对碘化铯薄膜光阴极微通道板的镀膜深度和厚度进行测试,采用氧化铝作为碘化铯薄膜光阴极的保护膜层,并分别制备了厚度为2 nm、5 nm和10 nm的氧化铝保护膜层。在空气中存放不同时间后,碘化铯薄膜光阴极微通道板表面未发生明显潮解变化,其增益约为8800,暗计数率约为4.1 counts·s^(−1)·cm^(−2)。试验证明,氧化铝能够作为微通道板碘化铯膜层抗潮解超薄保护膜层。展开更多
文摘在基于Retinex分解的低照度图像增强算法中,通过同时估计反射层和亮度层进行反射层恢复是一种流行且有效的方法,但算法结构较为复杂,实现难度大。这是因为恢复反射率是一个约束优化问题,不能用简单的优化技术来解决。本文提出了一种细节显著性估计方法,可以利用简单的梯度下降优化技术从图像中恢复出反射层。该方法是基于我们所提出假设——暗区域近似(dark region approximation,DRA):由于低照度图像暗区域中的光照很弱,因此将其忽略不计,即将输入图像中暗区域的灰度分布直接近似为反射层。首先利用高斯场准则构建目标函数,通过基于DRA的Retinex模型估计细节显著层;然后用拟牛顿法求解该无约束优化问题;最后,从细节显著层中恢复出反射层作为最终增强结果。实验结果表明,与现有同类方法相比,我们的方法在增强效果和计算效率方面都具有优势。