通过研究,提出了一种基于不确定性建模的中文场景文本编辑(Chinese scene text editing,CSTE)方法,并发现了1种有效的技术解决方案.该方法通过不确定性引导的调整机制优化预测噪声,提升噪声估计准确性,从而增强生成文本的清晰度和结构...通过研究,提出了一种基于不确定性建模的中文场景文本编辑(Chinese scene text editing,CSTE)方法,并发现了1种有效的技术解决方案.该方法通过不确定性引导的调整机制优化预测噪声,提升噪声估计准确性,从而增强生成文本的清晰度和结构完整性.同时,通过过滤文本和图像特征中的无关信息,提高了跨模态对齐能力,实现了文本与背景纹理的融合.展开更多
如今,区块链技术被应用到包含电子证照、人脸图像等政府数据共享领域,但当前的大型区块链系统普遍面临低带宽和高存储成本的问题.本文提出了一种适用于政务区块链的跨模态人脸生成模型,将人脸图像转换为文本模态存储在链上,用户可使用...如今,区块链技术被应用到包含电子证照、人脸图像等政府数据共享领域,但当前的大型区块链系统普遍面临低带宽和高存储成本的问题.本文提出了一种适用于政务区块链的跨模态人脸生成模型,将人脸图像转换为文本模态存储在链上,用户可使用文本与掩膜生成指定人的人脸图像.首先利用多任务学习方法训练基于ResNet-18网络结构的人脸分类器,将人脸图像转换为身份代号文本存储在链上.然后设计了区域感知码本和基于Transformer结构的混合专家采样器,采样器采用扩散模型的方法从码本中采样索引,采样结果由一个可学习的解码器转换成细粒度的人脸图像.在进行数据增强后的Casia Face V5数据集上的实验表明,模型在人脸分类任务中准确率可达95%以上,压缩效果达到了传统图像压缩方法1/10000的持久化时间与1/200的文件大小,与其他先进人脸图像生成方法相比,此模型可以可控地生成高保真度的指定人的人脸图像,并以1/20的参数量达到与大型预训练模型相近的人脸生成效果.展开更多
文摘通过研究,提出了一种基于不确定性建模的中文场景文本编辑(Chinese scene text editing,CSTE)方法,并发现了1种有效的技术解决方案.该方法通过不确定性引导的调整机制优化预测噪声,提升噪声估计准确性,从而增强生成文本的清晰度和结构完整性.同时,通过过滤文本和图像特征中的无关信息,提高了跨模态对齐能力,实现了文本与背景纹理的融合.
文摘如今,区块链技术被应用到包含电子证照、人脸图像等政府数据共享领域,但当前的大型区块链系统普遍面临低带宽和高存储成本的问题.本文提出了一种适用于政务区块链的跨模态人脸生成模型,将人脸图像转换为文本模态存储在链上,用户可使用文本与掩膜生成指定人的人脸图像.首先利用多任务学习方法训练基于ResNet-18网络结构的人脸分类器,将人脸图像转换为身份代号文本存储在链上.然后设计了区域感知码本和基于Transformer结构的混合专家采样器,采样器采用扩散模型的方法从码本中采样索引,采样结果由一个可学习的解码器转换成细粒度的人脸图像.在进行数据增强后的Casia Face V5数据集上的实验表明,模型在人脸分类任务中准确率可达95%以上,压缩效果达到了传统图像压缩方法1/10000的持久化时间与1/200的文件大小,与其他先进人脸图像生成方法相比,此模型可以可控地生成高保真度的指定人的人脸图像,并以1/20的参数量达到与大型预训练模型相近的人脸生成效果.