目的静脉源性搏动性耳鸣是一种与心率同步的客观性耳鸣,长期罹患可严重影响患者的身心健康。高颅内压是搏动性耳鸣的病因之一,其致病机制尚未明确,最近的临床影像发现,颅内压的升降与静脉窦的狭窄或扩张密切相关,而对二者的定量化分析...目的静脉源性搏动性耳鸣是一种与心率同步的客观性耳鸣,长期罹患可严重影响患者的身心健康。高颅内压是搏动性耳鸣的病因之一,其致病机制尚未明确,最近的临床影像发现,颅内压的升降与静脉窦的狭窄或扩张密切相关,而对二者的定量化分析目前仍然欠缺。本研究旨在探究颅内压-静脉窦形态-搏动性静脉声的定量化关系,以期为搏动性耳鸣的临床诊疗提供相应的生物力学支撑。方法体外物理模型与数值仿真方法相结合。体外物理实验设置3种横静脉窦形态工况(引流等势、引流劣势、发育不全),利用近生理血液循环模拟-颅内压加载-搏动性静脉声采集实验系统,分析不同工况下在高颅内压(150 mm H_(2)O)加载下搏动性静脉声的RMS声压和频率特征。同时,通过数值仿真分析高颅内压状态下静脉窦形态及内部血流场变化。结果体外实验结果显示,随着模拟颅内压的增高,引流劣势和发育不全相较于引流等势更易被诱发产生搏动性耳鸣,且搏动性噪声的强度随着模拟颅内压的增高亦呈上升趋势。数值仿真表明,随着颅内压增高,双侧横窦的流量分配差距逐渐扩大,表现出明显的极端化。结论本研究定量化揭示了横窦引流差异及颅内压高低与搏动性静脉声之间的关系,即引流劣势、横窦发育不全可能是引发搏动性耳鸣的危险因素,而在高颅内压状态下,这两种情况下的双侧横窦引流会进一步极端化,进而被诱发产生搏动性耳鸣。展开更多
损伤与防护生物力学(injury and protection biomechanics)是研究生物组织或器官损伤机理及其防护方法的一门交叉性学科,属于现代生物力学的重要分支.其研究目标是降低载荷环境下组织或器官的损伤程度,主要内容包括载荷造成生物组织和...损伤与防护生物力学(injury and protection biomechanics)是研究生物组织或器官损伤机理及其防护方法的一门交叉性学科,属于现代生物力学的重要分支.其研究目标是降低载荷环境下组织或器官的损伤程度,主要内容包括载荷造成生物组织和器官的损伤机制、损伤耐受极限以及损伤过程中的生物力学动态响应、如何改善组织和器官所处的力学环境降低其损伤程度、有效的防护装备优化设计思路.高过载性载荷由于其作用短时性和爆发性具有较高致命性,因此,人在过载环境下的抗损伤能力已越来越成为航空器研制、汽车性能提升、运动员竞技能力提升与充分发挥的瓶颈;尤其是更快、更灵活新型飞机的出现,超音速弹射救生、大过载高增长率的机动飞行防护等问题向损伤与防护生物力学研究提出了新的挑战,同时也为损伤与防护生物力学的发展提供了新发展机遇.随着科技不断进步,航空航天、交通事故、体育运动乃至日常生活中老年人跌倒等过程中人体冲击过载性损伤越来越呈现发生率高、防护效率低等问题,一方面由于人体耐限实验会造成损伤而难以获得真实数据,另一方面生物组织具有复杂非线性及黏弹性、可再生和重建特性,涉及到如何精准描述生物组织或器官的本构关系、组织解剖学特征与其力学特性之间相关性,建立不同尺度的组织或器官损伤机理与耐受极限、防护方法及防护装备设计准则.为此,本文将主要总结过载性损伤与防护生物力学的主要研究内容和研究方法,并在此基础上针对人体在复杂过载环境下的损伤类型、损伤机制(包括生物力学和力学生物学响应)、损伤耐限及防护方法进行回顾,包括近年来该领域国内外的主要进展,并提出该领域发展趋势.过载性损伤与防护生物力学研究对于保障和提高复杂过载环境下人体安全性具有重要意义,可为解决航空航天、交通、体育运动中广泛涉及的骨肌多轴向损伤评价方法与标准制定提供科学依据,对指导防护装备优化设计具有重要理论价值,同时该方面研究在工程仿生材料和防护装备方面具有潜在实用价值和广阔应用前景.展开更多
文摘目的静脉源性搏动性耳鸣是一种与心率同步的客观性耳鸣,长期罹患可严重影响患者的身心健康。高颅内压是搏动性耳鸣的病因之一,其致病机制尚未明确,最近的临床影像发现,颅内压的升降与静脉窦的狭窄或扩张密切相关,而对二者的定量化分析目前仍然欠缺。本研究旨在探究颅内压-静脉窦形态-搏动性静脉声的定量化关系,以期为搏动性耳鸣的临床诊疗提供相应的生物力学支撑。方法体外物理模型与数值仿真方法相结合。体外物理实验设置3种横静脉窦形态工况(引流等势、引流劣势、发育不全),利用近生理血液循环模拟-颅内压加载-搏动性静脉声采集实验系统,分析不同工况下在高颅内压(150 mm H_(2)O)加载下搏动性静脉声的RMS声压和频率特征。同时,通过数值仿真分析高颅内压状态下静脉窦形态及内部血流场变化。结果体外实验结果显示,随着模拟颅内压的增高,引流劣势和发育不全相较于引流等势更易被诱发产生搏动性耳鸣,且搏动性噪声的强度随着模拟颅内压的增高亦呈上升趋势。数值仿真表明,随着颅内压增高,双侧横窦的流量分配差距逐渐扩大,表现出明显的极端化。结论本研究定量化揭示了横窦引流差异及颅内压高低与搏动性静脉声之间的关系,即引流劣势、横窦发育不全可能是引发搏动性耳鸣的危险因素,而在高颅内压状态下,这两种情况下的双侧横窦引流会进一步极端化,进而被诱发产生搏动性耳鸣。
文摘损伤与防护生物力学(injury and protection biomechanics)是研究生物组织或器官损伤机理及其防护方法的一门交叉性学科,属于现代生物力学的重要分支.其研究目标是降低载荷环境下组织或器官的损伤程度,主要内容包括载荷造成生物组织和器官的损伤机制、损伤耐受极限以及损伤过程中的生物力学动态响应、如何改善组织和器官所处的力学环境降低其损伤程度、有效的防护装备优化设计思路.高过载性载荷由于其作用短时性和爆发性具有较高致命性,因此,人在过载环境下的抗损伤能力已越来越成为航空器研制、汽车性能提升、运动员竞技能力提升与充分发挥的瓶颈;尤其是更快、更灵活新型飞机的出现,超音速弹射救生、大过载高增长率的机动飞行防护等问题向损伤与防护生物力学研究提出了新的挑战,同时也为损伤与防护生物力学的发展提供了新发展机遇.随着科技不断进步,航空航天、交通事故、体育运动乃至日常生活中老年人跌倒等过程中人体冲击过载性损伤越来越呈现发生率高、防护效率低等问题,一方面由于人体耐限实验会造成损伤而难以获得真实数据,另一方面生物组织具有复杂非线性及黏弹性、可再生和重建特性,涉及到如何精准描述生物组织或器官的本构关系、组织解剖学特征与其力学特性之间相关性,建立不同尺度的组织或器官损伤机理与耐受极限、防护方法及防护装备设计准则.为此,本文将主要总结过载性损伤与防护生物力学的主要研究内容和研究方法,并在此基础上针对人体在复杂过载环境下的损伤类型、损伤机制(包括生物力学和力学生物学响应)、损伤耐限及防护方法进行回顾,包括近年来该领域国内外的主要进展,并提出该领域发展趋势.过载性损伤与防护生物力学研究对于保障和提高复杂过载环境下人体安全性具有重要意义,可为解决航空航天、交通、体育运动中广泛涉及的骨肌多轴向损伤评价方法与标准制定提供科学依据,对指导防护装备优化设计具有重要理论价值,同时该方面研究在工程仿生材料和防护装备方面具有潜在实用价值和广阔应用前景.