期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
融合模型量化和缓存优化的实时语音监测方法
1
作者 吴非 沈润楠 陈宇 《计算机工程与应用》 北大核心 2025年第16期215-223,共9页
针对文化市场新业态的监管需求,提出一种融合模型量化和缓存优化的实时语音监测方法。通过模型量化,在有限精度损失的情况下优化大模型加载速度并降低系统资源开销。在数据缓存优化方面采用最长公共前缀匹配策略动态调整缓冲区设置,提... 针对文化市场新业态的监管需求,提出一种融合模型量化和缓存优化的实时语音监测方法。通过模型量化,在有限精度损失的情况下优化大模型加载速度并降低系统资源开销。在数据缓存优化方面采用最长公共前缀匹配策略动态调整缓冲区设置,提升语音转录内容上下文关联,同时降低词错率(word error rate,WER)。针对敏感内容训练基于BERT-TextCNN的敏感信息检测模型,建立非现场监管语音监测体系,实现对演出内容的实时监测和预警。实验结果表明,提出的模型量化方法在Whisper-large-v3预训练模型的FP16和FP32两个基准测试中分别能够提升2.62倍和2.11倍推理速度,与现有方法相比具有优势;在语音识别准确率和延迟方面,采用缓存优化策略后语音转录延迟平均降低了12.88%,中文词错率降低了14.42%;在语言类演出节目构成的真实数据集上进行实验,BERT-TextCNN模型对敏感内容的检测准确率达到92.66%,与其他方法相比具有更高的精确度和召回率,证明了所提方法能够有效支撑对小剧场等文化演出形式的非现场监管。 展开更多
关键词 语音识别 模型量化 最长公共前缀 敏感内容检测
在线阅读 下载PDF
多视觉传感器协同弱小目标检测 被引量:2
2
作者 王田 程嘉翔 +2 位作者 刘克新 王薇 吕金虎 《指挥与控制学报》 CSCD 北大核心 2024年第1期9-18,共10页
多视觉传感器协同对空实现全区域覆盖的弱小目标检测,在近距离防空领域中具有重要意义。现有的全区域覆盖方法存在覆盖率低、随机性差等问题,弱小目标检测算法存在模型大、定位及分类准确性低等问题。提出了一种高效的对空全区域覆盖算... 多视觉传感器协同对空实现全区域覆盖的弱小目标检测,在近距离防空领域中具有重要意义。现有的全区域覆盖方法存在覆盖率低、随机性差等问题,弱小目标检测算法存在模型大、定位及分类准确性低等问题。提出了一种高效的对空全区域覆盖算法和轻量级弱小目标检测算法,通过结合最大面积优先法和最小曼哈顿离法改善存在覆盖死角和随机性差等问题。提出密集通道扩展网络(dense and channel expand network,DCENet)模型,基于轻量级稠密拼接和自适应尺寸通道扩展方法,在弱小目标数据集上获得了比原算法更有竞争力的平均精度结果。 展开更多
关键词 协同目标检测 全区域覆盖 弱小目标检测 轻量级稠密拼接
在线阅读 下载PDF
基于数据表示不变性的域泛化研究 被引量:2
3
作者 倪云昊 黄雷 《图学学报》 CSCD 北大核心 2024年第4期705-713,共9页
域泛化是人工智能近几年非常热门的一个研究方向,希望在不同的数据分布中学习到与任务相关的不变表征,即移除不同域在学习任务中的影响,从而提升模型的域泛化能力。为提升模型域泛化能力,利用基于不变性风险最小化的思想,具体将神经网... 域泛化是人工智能近几年非常热门的一个研究方向,希望在不同的数据分布中学习到与任务相关的不变表征,即移除不同域在学习任务中的影响,从而提升模型的域泛化能力。为提升模型域泛化能力,利用基于不变性风险最小化的思想,具体将神经网络分为特征提取器和不变性分类器进行分别探究。在特征提取器上,采用了基于牛顿迭代的组白化方法来控制激活值的分布,从而使得不同的图像经过神经网络后能够去除部分域信息,以求达到域泛化的目的;在不变性分类器上,探究了特征和权重的规范化方法对模型域泛化效果的影响,并提出了基于余弦相似度损失函数的雪花算法,该算法提升了模型域泛化的准确率。此外,提供了关于雪花算法的理论推导并做了深入分析,为实验提供了理论支撑。 展开更多
关键词 域泛化 不变风险最小化 组白化 迭代白化 雪花算法
在线阅读 下载PDF
基于隐空间扩散模型的差分隐私数据合成方法研究 被引量:1
4
作者 葛胤池 张辉 孙浩航 《计算机科学》 CSCD 北大核心 2024年第3期30-38,共9页
数据共享与发布可以有效发挥数据的价值,能够在数智时代推动科技进步和经济社会的发展。在数据共享的同时如何保护数据版权及个人隐私仍是一项巨大的挑战。差分隐私数据合成是数据隐私保护的有效手段,数据持有者通过发布合成数据取代真... 数据共享与发布可以有效发挥数据的价值,能够在数智时代推动科技进步和经济社会的发展。在数据共享的同时如何保护数据版权及个人隐私仍是一项巨大的挑战。差分隐私数据合成是数据隐私保护的有效手段,数据持有者通过发布合成数据取代真实数据,一方面可以保护数据隐私,另一方面也可以提高数据的泛用性与可用性。针对差分隐私生成模型合成图像数据样本可用性低的问题,提出了基于隐空间扩散模型的两阶段差分隐私生成模型。首先对原始图像进行差分隐私感知信息压缩,将其从像素空间投射至隐空间中,获得原始敏感数据的脱敏隐向量表示。然后将隐向量输入扩散模型,使其逐渐转变为先验分布,并通过去噪过程进行采样。最后,使用MNIST和Fashion MNIST数据集训练并进行数据合成,结果表明该模型在FID和下游任务准确性上相比DP-Sinkhorn等SOTA模型均有明显提升。 展开更多
关键词 差分隐私 数据合成 生成模型 自编码器 扩散模型
在线阅读 下载PDF
基于预训练模型和中英文威胁情报的TTP识别方法研究
5
作者 任昌禹 张玲 +1 位作者 姬航远 杨立群 《信息网络安全》 CSCD 北大核心 2024年第7期1076-1087,共12页
TTP情报主要存在于非结构化的威胁报告中,是一种具有重要价值的网络威胁情报。然而,目前开源的TTP分类标签数据集主要集中在英文领域,涵盖的语料来源与TTP种类较为有限,特别是缺乏中文领域的相关数据。针对该情况,文章构建了一个中英文... TTP情报主要存在于非结构化的威胁报告中,是一种具有重要价值的网络威胁情报。然而,目前开源的TTP分类标签数据集主要集中在英文领域,涵盖的语料来源与TTP种类较为有限,特别是缺乏中文领域的相关数据。针对该情况,文章构建了一个中英文TTP情报数据集BTICD,该数据集包含17700条样本数据与236种对应的TTP。BTICD首次利用了公开的中文威胁报告语料进行TTP标注,且标注了一部分无法映射到任何一种TTP的白样本数据。文章基于预训练模型构建,并在该双语数据集上微调得到双语TTP识别模型SecBiBERT。实验结果表明,SecBiBERT在50种常见TTP分类任务上的Micro F1分数达到86.49%,在全量236类TTP分类任务上Micro F1分数达到73.09%,识别性能表现良好。 展开更多
关键词 TTP 威胁情报 预训练模型
在线阅读 下载PDF
面向深度强化学习的对抗攻防综述 被引量:5
6
作者 刘艾杉 郭骏 +3 位作者 李思民 肖宜松 刘祥龙 陶大程 《计算机学报》 EI CAS CSCD 北大核心 2023年第8期1553-1576,共24页
深度强化学习技术以一种端到端学习的通用形式融合了深度学习的感知能力与强化学习的决策能力,在多个领域得到了广泛应用,形成了人工智能领域的研究热点.然而,由于对抗样本等攻击技术的出现,深度强化学习暴露出巨大的安全隐患.例如,通... 深度强化学习技术以一种端到端学习的通用形式融合了深度学习的感知能力与强化学习的决策能力,在多个领域得到了广泛应用,形成了人工智能领域的研究热点.然而,由于对抗样本等攻击技术的出现,深度强化学习暴露出巨大的安全隐患.例如,通过在真实世界中打印出对抗贴纸便可以轻松地使基于深度强化学习的智能系统做出错误的决策,造成严重的损失.基于此,本文对深度强化学习领域对抗攻防技术的前沿研究进行了全面的综述,旨在把握整个领域的研究进展与方向,进一步推动深度强化学习对抗攻防技术的长足发展,助力其应用安全可靠.结合马尔科夫决策过程中可被扰动的空间,本文首先从基于状态、基于奖励以及基于动作角度的详细阐述了深度强化学习对抗攻击的进展;其次,通过与经典对抗防御算法体系进行对齐,本文从对抗训练、对抗检测、可证明鲁棒性和鲁棒学习的角度归纳总结了深度强化学习领域的对抗防御技术;最后,本文从基于对抗攻击的深度强化学习机理理解与模型增强的角度分析了对抗样本在强化学习领域的应用并讨论了领域内的挑战和未解决问题. 展开更多
关键词 对抗样本 对抗攻击 对抗防御 深度强化学习 模型鲁棒性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部