期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
改进YOLOv5的智慧课堂人脸检测算法 被引量:2
1
作者 钟源 袁家政 +2 位作者 李鸿天 刘宏哲 徐成 《计算机工程与应用》 CSCD 北大核心 2024年第11期251-257,共7页
智慧课堂是人工智能领域热门的应用场景。针对课堂场景下摄像头位置较远且偏,图像中目标存在人脸过小和遮挡导致漏检或错检等问题,提出了一种改进YOLOv5的智慧课堂人脸检测算法YOLOv5-SASA。该算法主要包括三个部分,在backbone层沿用了C... 智慧课堂是人工智能领域热门的应用场景。针对课堂场景下摄像头位置较远且偏,图像中目标存在人脸过小和遮挡导致漏检或错检等问题,提出了一种改进YOLOv5的智慧课堂人脸检测算法YOLOv5-SASA。该算法主要包括三个部分,在backbone层沿用了CSPDarknet53网络,通过在最后的空间池化层中使用BasicRFB模块来有效增强网络的特征提取能力;采用NWD损失函数来提高模型对小目标检测的鲁棒性,同时在head层中引入了独立自注意力机制模块SASA,以解决人脸遮挡的问题,并降低模型的参数量;通过降低中间层通道神经元的数量、调节学习率等方式,对改进的YOLOv5网络进行了优化,以避免模型过拟合。实验结果表明,所提出的方法在WiderFace验证集的easy、medium和hard难度下的效果均优于原网络,分别达到了97.5%、96.3%和86.5%的准确率,能够有效提升课堂场景下人脸检测的精度。 展开更多
关键词 智慧课堂 人脸检测 YOLOv5 独立自注意力机制
在线阅读 下载PDF
基于多模态融合的城市道路场景视频描述模型研究 被引量:7
2
作者 李铭兴 徐成 +3 位作者 李学伟 刘宏哲 闫晨阳 廖文森 《计算机应用研究》 CSCD 北大核心 2023年第2期607-611,640,共6页
城市道路视频描述存在仅考虑视觉信息而忽视了同样重要的音频信息的问题,多模态融合算法是解决此问题的方案之一。针对现有基于Transformer的多模态融合算法都存在着模态之间融合性能低、计算复杂度高的问题,为了提高多模态信息之间的... 城市道路视频描述存在仅考虑视觉信息而忽视了同样重要的音频信息的问题,多模态融合算法是解决此问题的方案之一。针对现有基于Transformer的多模态融合算法都存在着模态之间融合性能低、计算复杂度高的问题,为了提高多模态信息之间的交互性,提出了一种新的基于Transformer的视频描述模型多模态注意力瓶颈视频描述(multimodal attention bottleneck for video captioning,MABVC)。首先使用预训练好的I3D和VGGish网络提取视频的视觉和音频特征并将提取好的特征输入到Transformer模型当中,然后解码器部分分别训练两个模态的信息再进行多模态的融合,最后将解码器输出的结果经过处理生成人们可以理解的文本描述。在通用数据集MSR-VTT、MSVD和自建数据集BUUISE上进行对比实验,通过评价指标对模型进行验证。实验结果表明,基于多模态注意力融合的视频描述模型在各个指标上都有明显提升。该模型在交通场景数据集上依旧能够取得良好的效果,在智能驾驶行业具有很大的应用前景。 展开更多
关键词 视频描述 多模态融合 注意力机制 智能驾驶
在线阅读 下载PDF
基于多分支网络的道路场景实时语义分割方法 被引量:2
3
作者 廖文森 徐成 +1 位作者 刘宏哲 李学伟 《计算机应用研究》 CSCD 北大核心 2023年第8期2526-2530,共5页
针对目前实时语义分割方法存在大目标分割不准确、小目标信息丢失的问题,提出一种基于多分支网络的实时语义分割算法。首先,对双边分割网络进行优化,设计了金字塔分支扩大感受野,以覆盖视野内的大目标,充分地将上下文信息结合起来;其次... 针对目前实时语义分割方法存在大目标分割不准确、小目标信息丢失的问题,提出一种基于多分支网络的实时语义分割算法。首先,对双边分割网络进行优化,设计了金字塔分支扩大感受野,以覆盖视野内的大目标,充分地将上下文信息结合起来;其次,设计双边指导融合模块,为深层和浅层的特征映射提供指导信息,弥补小目标信息的损失。最后在Cityscapes数据集上进行验证,实验结果表明所提模型以51.3 fps的推理速度使平均交并比达到77.8%,与基准相比,精度提高了2.5个百分点。所提方法采用金字塔分支,在扩大感受野的同时,获取不同尺度的语义边缘区域特性,增强对语义边界的建模能力,且提出的双边指导融合模块可以更有效地融合不同层次的特征,弥补下采样造成的信息丢失,能够更好地指导模型学习。 展开更多
关键词 实时语义分割 轻量级 多分支网络 特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部