期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度神经网络的粒子图像测速算法 被引量:22
1
作者 蔡声泽 许超 +1 位作者 高琪 魏润杰 《空气动力学学报》 CSCD 北大核心 2019年第3期455-461,共7页
粒子图像测速(PIV)作为一种流体力学实验技术,能够从流体图像中获取全局、定量的速度场信息。随着人工智能技术的发展,设计用于粒子图像测速的深度学习技术具有广泛的应用前景和研究价值。借鉴在计算机视觉领域用于运动估计的光流神经网... 粒子图像测速(PIV)作为一种流体力学实验技术,能够从流体图像中获取全局、定量的速度场信息。随着人工智能技术的发展,设计用于粒子图像测速的深度学习技术具有广泛的应用前景和研究价值。借鉴在计算机视觉领域用于运动估计的光流神经网络,采用人工合成的粒子图像数据集进行监督学习训练,从而获得适用于流体运动估计的深度神经网络模型,并且能够高效地提供单像素级别分辨率的速度场。文中采用人工合成的湍流流场粒子图像进行初步实验评估,并讨论PIV神经网络的隐藏层输出和内在原理,同时将训练而成的深度神经网络模型与传统的相关分析法、光流法对比;随后进行射流流场测速实验,验证深度神经网络PIV的实用性。实验结果表明,文中提出的基于深度神经网络的粒子图像测速在精度、分辨率、计算效率上具有优势。 展开更多
关键词 粒子图像测速 流体运动估计 卷积神经网络 深度学习 PIV数据集 射流实验
在线阅读 下载PDF
基于机器学习方法的三维粒子重构技术 被引量:4
2
作者 朱浩然 高琪 +4 位作者 王洪平 廖相巍 赵亮 魏润杰 王晋军 《实验流体力学》 CAS CSCD 北大核心 2021年第3期88-93,共6页
通过三维粒子重构获取粒子场的分布情况是层析粒子图像测速的关键步骤,有限二维投影下的三维粒子重构是一个欠定的反问题,其精确解往往很难得到。一般情况下,可以通过优化方法得到近似解。为了获取质量更高的粒子场并用于层析粒子图像测... 通过三维粒子重构获取粒子场的分布情况是层析粒子图像测速的关键步骤,有限二维投影下的三维粒子重构是一个欠定的反问题,其精确解往往很难得到。一般情况下,可以通过优化方法得到近似解。为了获取质量更高的粒子场并用于层析粒子图像测速,提出了一种基于卷积神经网络(Convolutional Neural Networks,CNN)的粒子重构方法。所提出的技术可以从基于传统的代数重构技术(Algebraic Reconstruction Technique,ART)的方法所得到的粗略粒子分布中进一步提高粒子重构质量。与现有的基于ART的算法相比,新技术在重构质量方面有了显著的改进,可以有效剔除虚假粒子并更准确地还原粒子形状,并且在粒子浓度较稠密的情况下计算速度至少快了一个数量级。 展开更多
关键词 机器学习 粒子重构 层析粒子图像测速 卷积神经网络 重构质量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部