期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种优化初始化中心的k均值web信息聚类算法 被引量:2
1
作者 张世博 周义明 《北京石油化工学院学报》 2011年第4期55-58,共4页
k-means算法是一种重要的聚类算法,在网络信息处理领域有着广泛的应用。由于k-means算法终止于一个局部最优状态,所以初始类中心点的选择会在很大程度上影响其聚类效果。针对k-means算法所存在的问题,构造了文本集合的相似度矩阵,基于... k-means算法是一种重要的聚类算法,在网络信息处理领域有着广泛的应用。由于k-means算法终止于一个局部最优状态,所以初始类中心点的选择会在很大程度上影响其聚类效果。针对k-means算法所存在的问题,构造了文本集合的相似度矩阵,基于平均相似度集合通过排序迭代优选出了初始中心点。实验表明此算法可以有效减少迭代次数并提高聚类精度,最终获得较好的聚类效果。 展开更多
关键词 K均值 聚类 初始中心点 优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部