可截取签名允许签名人根据需要,在不与原始签名人交互的情况下删除已签名中的敏感数据块,并为截取后的数据计算一个公开并且可验证的签名.目前大多数可截取签名方案都是基于传统数论的困难假设构造的,鉴于量子计算机可能构成的威胁,构...可截取签名允许签名人根据需要,在不与原始签名人交互的情况下删除已签名中的敏感数据块,并为截取后的数据计算一个公开并且可验证的签名.目前大多数可截取签名方案都是基于传统数论的困难假设构造的,鉴于量子计算机可能构成的威胁,构造能够抵抗量子计算攻击的可截取签名方案尤为重要.因此基于格的Ring-SIS(ring short integer solution)问题,提出一种理想格上基于身份的可截取签名方案,证明了该方案在选择身份和消息攻击下存在不可伪造性和隐私性.理论分析和效率分析表明,相较于同类方案,该方案在功能性上同时具备身份认证、隐私性和抗量子攻击等多种功能,用户公钥尺寸更短、安全性更高、算法耗时更低.展开更多
The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for thre...The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for three versions of the Ballet family block ciphers.The Ballet‑p/k includes a modular-addition operation uncommon in lightweight block ciphers.Quantum ripple-carry adder is implemented for both“32+32”and“64+64”scale to support this operation.Subsequently,qubits,quantum gates count,and quantum circuit depth of three versions of Ballet algorithm are systematically evaluated under quantum computing model,and key recovery attack circuits are constructed based on Grover’s algorithm against each version.The comprehensive analysis shows:Ballet-128/128 fails to NIST Level 1 security,while when the resource accounting is restricted to the Clifford gates and T gates set for the Ballet-128/256 and Ballet-256/256 quantum circuits,the design attains Level 3.展开更多
文摘可截取签名允许签名人根据需要,在不与原始签名人交互的情况下删除已签名中的敏感数据块,并为截取后的数据计算一个公开并且可验证的签名.目前大多数可截取签名方案都是基于传统数论的困难假设构造的,鉴于量子计算机可能构成的威胁,构造能够抵抗量子计算攻击的可截取签名方案尤为重要.因此基于格的Ring-SIS(ring short integer solution)问题,提出一种理想格上基于身份的可截取签名方案,证明了该方案在选择身份和消息攻击下存在不可伪造性和隐私性.理论分析和效率分析表明,相较于同类方案,该方案在功能性上同时具备身份认证、隐私性和抗量子攻击等多种功能,用户公钥尺寸更短、安全性更高、算法耗时更低.
基金State Key Lab of Processors,Institute of Computing Technology,Chinese Academy of Sciences(CLQ202516)the Fundamental Research Funds for the Central Universities of China(3282025047,3282024051,3282024009)。
文摘The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for three versions of the Ballet family block ciphers.The Ballet‑p/k includes a modular-addition operation uncommon in lightweight block ciphers.Quantum ripple-carry adder is implemented for both“32+32”and“64+64”scale to support this operation.Subsequently,qubits,quantum gates count,and quantum circuit depth of three versions of Ballet algorithm are systematically evaluated under quantum computing model,and key recovery attack circuits are constructed based on Grover’s algorithm against each version.The comprehensive analysis shows:Ballet-128/128 fails to NIST Level 1 security,while when the resource accounting is restricted to the Clifford gates and T gates set for the Ballet-128/256 and Ballet-256/256 quantum circuits,the design attains Level 3.