在进行实时对抗的任务中,对于敌方的动作识别较为困难,需要根据对方的移动轨迹或行为来分析对方的意图,预测其未来目标,构建规划策略库.针对此问题,提出基于数据驱动的多智能体识别算法,该算法首先采用基于自动机的特征提取方法,获得规...在进行实时对抗的任务中,对于敌方的动作识别较为困难,需要根据对方的移动轨迹或行为来分析对方的意图,预测其未来目标,构建规划策略库.针对此问题,提出基于数据驱动的多智能体识别算法,该算法首先采用基于自动机的特征提取方法,获得规划需要的位置和任务信息;然后将规划识别问题转换为多分类问题,并从单智能体角度切入,给出了一种基于极端梯度提升(extreme gradient boosting,XGBoost)的多分类模型;之后,对于多智能体之间可能存在的合作行为,使用无监督学习的一种基于密度对噪声鲁棒的空间聚类算法(density-based spatial clustering of applications with noise,DBSCAN)对多智能体进行分簇,以促进协同合作.对于同簇智能体,构建了一种针对多智能体的多分类模型,完成对多智能体的目标预测.在获悉敌方目标后,提出基于博弈的围捕逼停算法,构建非合作动态博弈模型,通过求解纳什均衡得到应对敌方的最优策略.最后,通过仿真验证了所提出算法的有效性.展开更多
深度学习是解决时间序列分类(Time series classification,TSC)问题的主要途径之一.然而,基于深度学习的TSC模型易受到对抗样本攻击,从而导致模型分类准确率大幅度降低.为此,研究了TSC模型的对抗攻击防御问题,设计了集成对抗训练(Advers...深度学习是解决时间序列分类(Time series classification,TSC)问题的主要途径之一.然而,基于深度学习的TSC模型易受到对抗样本攻击,从而导致模型分类准确率大幅度降低.为此,研究了TSC模型的对抗攻击防御问题,设计了集成对抗训练(Adversarial training,AT)防御方法.首先,设计了一种针对TSC模型的集成对抗训练防御框架,通过多种TSC模型和攻击方式生成对抗样本,并用于训练目标模型.其次,在生成对抗样本的过程中,设计了基于Shapelets的局部扰动算法,并结合动量迭代的快速梯度符号法(Momentum iterative fast gradient sign method,MI-FGSM),实现了有效的白盒攻击.同时,使用知识蒸馏(Knowledge distillation,KD)和基于沃瑟斯坦距离的生成对抗网络(Wasserstein generative adversarial network,WGAN)设计了针对替代模型的黑盒对抗攻击方法,实现了攻击者对目标模型未知时的有效攻击.在此基础上,在对抗训练损失函数中添加Kullback-Leibler(KL)散度约束,进一步提升了模型鲁棒性.最后,在多变量时间序列分类数据集UEA上验证了所提方法的有效性.展开更多
文摘在进行实时对抗的任务中,对于敌方的动作识别较为困难,需要根据对方的移动轨迹或行为来分析对方的意图,预测其未来目标,构建规划策略库.针对此问题,提出基于数据驱动的多智能体识别算法,该算法首先采用基于自动机的特征提取方法,获得规划需要的位置和任务信息;然后将规划识别问题转换为多分类问题,并从单智能体角度切入,给出了一种基于极端梯度提升(extreme gradient boosting,XGBoost)的多分类模型;之后,对于多智能体之间可能存在的合作行为,使用无监督学习的一种基于密度对噪声鲁棒的空间聚类算法(density-based spatial clustering of applications with noise,DBSCAN)对多智能体进行分簇,以促进协同合作.对于同簇智能体,构建了一种针对多智能体的多分类模型,完成对多智能体的目标预测.在获悉敌方目标后,提出基于博弈的围捕逼停算法,构建非合作动态博弈模型,通过求解纳什均衡得到应对敌方的最优策略.最后,通过仿真验证了所提出算法的有效性.