期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于TCN-BiLSTM与LSTM模型对比预测北洛河径流
被引量:
10
1
作者
张梦凡
丁兵兵
+1 位作者
贾国栋
余新晓
《北京林业大学学报》
CAS
CSCD
北大核心
2024年第4期141-148,共8页
【目的】本研究旨在探究TCN-BiLSTM耦合模型与传统LSTM模型在径流模拟预测中的性能,为洪水风险管理和区域水资源规划提供准确有效的径流预测模型。【方法】以北洛河流域为研究区,基于双向长短期记忆网络(BiLSTM)和时域卷积网络(TCN)建...
【目的】本研究旨在探究TCN-BiLSTM耦合模型与传统LSTM模型在径流模拟预测中的性能,为洪水风险管理和区域水资源规划提供准确有效的径流预测模型。【方法】以北洛河流域为研究区,基于双向长短期记忆网络(BiLSTM)和时域卷积网络(TCN)建立一种新的径流预测耦合模型TCN-BiLSTM。利用相关性分析,筛选预测径流的输入因子,确定4种不同的输入方案应用于TCN-BiLSTM耦合模型和传统LSTM模型,每个模型分别预测1、2、3 d的径流量。采用平均绝对误差(MAE)、均方根误差(RMSE)和拟合优度(R^(2))来评估模型的预测性能。【结果】(1)TCN-BiLSTM耦合模型整体预测性能优于LSTM模型,TCN-BiLSTM模型R^(2)达到0.91,高于LSTM的0.89。相比于LSTM,TCN-BiLSTM对于峰值和突变点的捕捉能力更强,对于波动大的复杂数据预测效果更优;(2)在针对未来1~3 d径流量预测中,随着预见期的延长,4种方案下TCN-BiLSTM和LSTM模型的预测效果均有所下降,相较于预测1 d,预测3 d的TCNBiLSTM和LSTM模型的R^(2)分别平均下降了0.17和0.14,RMSE分别平均增大了4.59和4.40,MAE分别平均增大了1.26和1.31;(3)在4种输入方案里,日累积降水量和日径流量作为输入变量时,模型的预测效果最好。降水数据的加入使得TCN-BiLSTM和LSTM模型相较于单一日径流数据作为输入变量时,1、2、3 d径流量预测的R^(2)分别提高15%、14%、6%和18%、14%和1%。【结论】TCN-BiLSTM耦合模型和LSTM模型R^(2)均能达到0.85以上,TCN-BiLSTM模型R^(2)较LSTM提高了2%。对比来看,TCN-BiLSTM模型在拟合洪水过程中表现更为优异,对于汛期的预测性能优于非汛期。输入变量对模型的影响较大,有效且高质量的气象数据能够提高模型的预测性能。
展开更多
关键词
水文模拟
TCN-BiLSTM
日径流预测
北洛河流域
在线阅读
下载PDF
职称材料
题名
基于TCN-BiLSTM与LSTM模型对比预测北洛河径流
被引量:
10
1
作者
张梦凡
丁兵兵
贾国栋
余新晓
机构
北京林业大学
国家
林业
与草原局
水
土
保持
重点实验室
北京林业大学水保持学院首都圈森林生态系统国家定位观测研究站
出处
《北京林业大学学报》
CAS
CSCD
北大核心
2024年第4期141-148,共8页
基金
国家自然科学基金项目(U2243202)
国家重点研发计划(2022YFF130080405)。
文摘
【目的】本研究旨在探究TCN-BiLSTM耦合模型与传统LSTM模型在径流模拟预测中的性能,为洪水风险管理和区域水资源规划提供准确有效的径流预测模型。【方法】以北洛河流域为研究区,基于双向长短期记忆网络(BiLSTM)和时域卷积网络(TCN)建立一种新的径流预测耦合模型TCN-BiLSTM。利用相关性分析,筛选预测径流的输入因子,确定4种不同的输入方案应用于TCN-BiLSTM耦合模型和传统LSTM模型,每个模型分别预测1、2、3 d的径流量。采用平均绝对误差(MAE)、均方根误差(RMSE)和拟合优度(R^(2))来评估模型的预测性能。【结果】(1)TCN-BiLSTM耦合模型整体预测性能优于LSTM模型,TCN-BiLSTM模型R^(2)达到0.91,高于LSTM的0.89。相比于LSTM,TCN-BiLSTM对于峰值和突变点的捕捉能力更强,对于波动大的复杂数据预测效果更优;(2)在针对未来1~3 d径流量预测中,随着预见期的延长,4种方案下TCN-BiLSTM和LSTM模型的预测效果均有所下降,相较于预测1 d,预测3 d的TCNBiLSTM和LSTM模型的R^(2)分别平均下降了0.17和0.14,RMSE分别平均增大了4.59和4.40,MAE分别平均增大了1.26和1.31;(3)在4种输入方案里,日累积降水量和日径流量作为输入变量时,模型的预测效果最好。降水数据的加入使得TCN-BiLSTM和LSTM模型相较于单一日径流数据作为输入变量时,1、2、3 d径流量预测的R^(2)分别提高15%、14%、6%和18%、14%和1%。【结论】TCN-BiLSTM耦合模型和LSTM模型R^(2)均能达到0.85以上,TCN-BiLSTM模型R^(2)较LSTM提高了2%。对比来看,TCN-BiLSTM模型在拟合洪水过程中表现更为优异,对于汛期的预测性能优于非汛期。输入变量对模型的影响较大,有效且高质量的气象数据能够提高模型的预测性能。
关键词
水文模拟
TCN-BiLSTM
日径流预测
北洛河流域
Keywords
hydrological simulation
TCN-BiLSTM
daily runoff prediction
Beiluo River Basin
分类号
S715 [农业科学—林学]
P333 [天文地球—水文科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于TCN-BiLSTM与LSTM模型对比预测北洛河径流
张梦凡
丁兵兵
贾国栋
余新晓
《北京林业大学学报》
CAS
CSCD
北大核心
2024
10
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部