-
题名基于稀疏表示的含噪图像超分辨重建方法
被引量:11
- 1
-
-
作者
窦诺
赵瑞珍
岑翼刚
胡绍海
张勇东
-
机构
北京交通大学信息科学研究所
北京市现代信息科学与网络技术重点实验室(北京交通大学信息科学研究所)
中国科学院智能信息处理重点实验室(中国科学院计算技术研究所)
-
出处
《计算机研究与发展》
EI
CSCD
北大核心
2015年第4期943-951,共9页
-
基金
国家"八六三"高技术研究发展计划基金项目(2014AA015202)
国家自然科学基金项目(61073079
+4 种基金
61272028)
中央高校基本科研业务费专项基金项目(2013JBZ003)
教育部高等学校博士点专项基金项目(20120009110008)
教育部新世纪优秀人才支持计划基金项目(NCET-12-0768)
教育部创新团队发展计划基金项目(IRT201206)
-
文摘
传统的含噪图像超分辨方法只能将图像去噪和图像超分辨分别进行处理,基于稀疏表示与字典训练的含噪声图像超分辨重建方法将两者融合在一起.提出一种基于图像块在训练字典下稀疏表示的协同处理方法,来解决含噪图像超分辨的问题.由于图像块可以由字典下的稀疏系数来表示,所以可训练一个分别适用于含噪低分辨率图像块和清晰高分辨率图像块的字典对,使得高低分辨率图像块在该字典对下具有相同的稀疏表示.当输入含噪低分辨率图像块时,先计算出其在低分辨率字典下的稀疏表示系数,然后利用此稀疏系数在高分辨率字典下进行重建,可得到清晰高分辨率图像块,最后通过整体优化完成清晰高分辨率图像,实现图像超分辨和图像去噪的目的.实验证明,采用局部自适应插值的方法放大低分辨率图像到中间分辨率再进行特征提取,比以往采用的双三线性插值的方法在重建图像质量上有提高,并通过研究字典λ参数的设置使得超分辨重建和去噪结果同时达到最佳,即在图像的视觉和质量上都具有较为明显的优势,具有很好的鲁棒性和有效性.
-
关键词
稀疏表示
图像超分辨
图像去噪
字典训练
图像重建
-
Keywords
sparse representation
image super-resolution
image denoising
dictionary learning
image reconstruction
-
分类号
TP391.41
[自动化与计算机技术—计算机应用技术]
-