为了解决无人机航拍图片玉米植株中心检测所面临的诸多挑战,包括植株遮挡、形态多样、光照变化以及视觉混淆等问题,提升检测精度和模型的鲁棒性,开发了一种基于YOLO-TSCAS(YOLO with triplet-attention,saliencyadaptive,and centroid a...为了解决无人机航拍图片玉米植株中心检测所面临的诸多挑战,包括植株遮挡、形态多样、光照变化以及视觉混淆等问题,提升检测精度和模型的鲁棒性,开发了一种基于YOLO-TSCAS(YOLO with triplet-attention,saliencyadaptive,and centroid awareness for scenes)模型的玉米植株中心检测算法。该算法通过三重注意力模块、显著性裁剪混合数据增强方法、自适应池化技术和选择性多单元激活函数等技术手段,有效提高了检测精度和鲁棒性。采用三重注意力模块解决目标遮挡和视觉混淆问题,使模型能够更好地关注植株中心区域。采用显著性裁剪混合数据增强方法,在训练过程中引入不同的环境和光照变化,增强了模型对复杂场景的适应能力。结合自适应池化技术提高空间分辨率,有助于捕捉更精细的特征信息,提高检测的准确性。采用选择性多单元激活函数进一步增强了网络的学习能力,使模型能够更好地适应各种场景下的植株中心检测任务。实验结果表明,与现有的YOLOX算法相比,YOLO-TSCAS算法在平均准确率和平均F1值上分别提高了22.73个百分点和0.255,并且平均对数漏检率也显著降低了0.35。与其他流行的检测模型相比,在两类植株中心目标检测精度上也取得了最佳效果。展开更多
文摘为了解决无人机航拍图片玉米植株中心检测所面临的诸多挑战,包括植株遮挡、形态多样、光照变化以及视觉混淆等问题,提升检测精度和模型的鲁棒性,开发了一种基于YOLO-TSCAS(YOLO with triplet-attention,saliencyadaptive,and centroid awareness for scenes)模型的玉米植株中心检测算法。该算法通过三重注意力模块、显著性裁剪混合数据增强方法、自适应池化技术和选择性多单元激活函数等技术手段,有效提高了检测精度和鲁棒性。采用三重注意力模块解决目标遮挡和视觉混淆问题,使模型能够更好地关注植株中心区域。采用显著性裁剪混合数据增强方法,在训练过程中引入不同的环境和光照变化,增强了模型对复杂场景的适应能力。结合自适应池化技术提高空间分辨率,有助于捕捉更精细的特征信息,提高检测的准确性。采用选择性多单元激活函数进一步增强了网络的学习能力,使模型能够更好地适应各种场景下的植株中心检测任务。实验结果表明,与现有的YOLOX算法相比,YOLO-TSCAS算法在平均准确率和平均F1值上分别提高了22.73个百分点和0.255,并且平均对数漏检率也显著降低了0.35。与其他流行的检测模型相比,在两类植株中心目标检测精度上也取得了最佳效果。