期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
面向复杂工业过程的虚拟样本生成综述 被引量:6
1
作者 汤健 崔璨麟 +1 位作者 夏恒 乔俊飞 《自动化学报》 EI CAS CSCD 北大核心 2024年第4期688-718,共31页
用于复杂工业过程难测运行指标和异常故障建模的样本具有量少稀缺、分布不平衡以及内涵机理知识匮乏等特性.虚拟样本生成(Virtual sample generation,VSG)作为扩充建模样本数量及其涵盖空间的技术,已成为解决上述问题的主要手段之一,但... 用于复杂工业过程难测运行指标和异常故障建模的样本具有量少稀缺、分布不平衡以及内涵机理知识匮乏等特性.虚拟样本生成(Virtual sample generation,VSG)作为扩充建模样本数量及其涵盖空间的技术,已成为解决上述问题的主要手段之一,但已有研究还存在缺乏理论支撑、分类准则与应用边界模糊等问题.本文在描述复杂工业过程难测运行指标和异常故障建模所存在问题的基础上,梳理虚拟样本定义及其内涵,给出面向工业过程回归与分类问题的VSG实现流程;接着,从样本覆盖区域、实现流程与推广应用等方向进行综述;然后,分析讨论VSG的下一步研究方向;最后,对全文进行总结并给出未来挑战. 展开更多
关键词 复杂工业过程 虚拟样本生成 数据驱动建模 样本覆盖区域
在线阅读 下载PDF
面向工业过程的图像生成及其应用研究综述 被引量:4
2
作者 汤健 郭海涛 +2 位作者 夏恒 王鼎 乔俊飞 《自动化学报》 EI CAS CSCD 北大核心 2024年第2期211-240,共30页
在面向工业过程的计算机视觉研究中,智能感知模型能否实际应用取决于其对复杂工业环境的适应能力.由于可利用的工业图像数据集存在分布不均、多样性不足和干扰严重等问题,如何生成符合多工况分布的期望训练集是提高感知模型性能的关键.... 在面向工业过程的计算机视觉研究中,智能感知模型能否实际应用取决于其对复杂工业环境的适应能力.由于可利用的工业图像数据集存在分布不均、多样性不足和干扰严重等问题,如何生成符合多工况分布的期望训练集是提高感知模型性能的关键.为解决上述问题,以城市固废焚烧(Municipal solid wastes incineration, MSWI)过程为背景,综述目前面向工业过程的图像生成及其应用研究,为进行面向工业图像的感知建模提供支撑.首先,梳理面向工业过程的图像生成定义和流程以及其应用需求;随后,分析在工业领域中具有潜在应用价值的图像生成算法;接着,从工业过程图像生成、生成图像评估和应用等视角进行现状综述;然后,对下一步研究方向进行讨论与分析;最后,对全文进行总结并指出未来挑战. 展开更多
关键词 工业过程 视觉感知 图像生成 生成图像评估与应用 城市固废焚烧
在线阅读 下载PDF
面向磁性硬盘定制化消磁的磁场数值建模与分析
3
作者 徐喆 张自影 汤健 《控制工程》 北大核心 2025年第5期777-787,共11页
为确保隐私安全和防止失密泄密,在对作为典型城市再生资源的废旧磁性存储介质进行资源化利用前,需要销毁其所包含信息。目前,业界多采用不符合国家“双碳”战略的最高磁场强度消磁方式,缺少如何进行定制化消磁的理论与应用探索。对此,... 为确保隐私安全和防止失密泄密,在对作为典型城市再生资源的废旧磁性存储介质进行资源化利用前,需要销毁其所包含信息。目前,业界多采用不符合国家“双碳”战略的最高磁场强度消磁方式,缺少如何进行定制化消磁的理论与应用探索。对此,提出面向磁性硬盘定制化消磁的磁场数值建模与分析方法。首先,进行消磁机多层多匝矩形线圈磁场强度的理论计算;接着,进行基于COMSOL软件的消磁磁场数值建模,完成与理论计算的验证后,分析电流密度、线圈高度、封装尺寸与磁场强度的影响;最后,基于所研制的消磁正样机进行验证,证明了定制化消磁理论的正确性和实际的可用性,为节能减碳提供了支撑。 展开更多
关键词 磁性存储介质 定制化消磁 COMSOL Multiphysics软件 磁场强度 矩形线圈 数值建模
在线阅读 下载PDF
城市固废焚烧过程神经网络控制研究综述
4
作者 汤健 田昊 +1 位作者 余文 乔俊飞 《自动化学报》 北大核心 2025年第9期1951-1973,共23页
城市固废焚烧(MSWI)已成为解决城市环境问题并实现可再生能源循环利用的主流技术,其对应系统具有参数多、耦合性强、非线性显著等特性,需采用先进过程控制技术以确保平稳高效的运行.鉴于此,进行面向MSWI过程神经网络控制(NNC)综述以弥... 城市固废焚烧(MSWI)已成为解决城市环境问题并实现可再生能源循环利用的主流技术,其对应系统具有参数多、耦合性强、非线性显著等特性,需采用先进过程控制技术以确保平稳高效的运行.鉴于此,进行面向MSWI过程神经网络控制(NNC)综述以弥补该领域的缺失和促进深入研究.首先,描述典型MSWI过程工艺,分析其控制问题与控制目标,明确控制复杂性,概述NNC及其在管理此类复杂系统方面的优势;其次,综述面向控制的机理与数据驱动焚烧炉模型;随后,简要分析和介绍非NNC控制器设计在MSWI过程的研究现状;接着,详细综述面向NNC的浅层和模糊控制器设计、网络参数、网络结构和事件触发在线更新算法以及稳定性分析的研究现状,并进行控制性能分析;然后,展望未来研究方向;最后,总结了本文在促进NNC向MSWI过程控制具身智能化发展中的贡献. 展开更多
关键词 城市固废焚烧 先进过程控制 神经网络控制 参数在线更新 结构自组织 事件驱动控制
在线阅读 下载PDF
基于事件触发的污水处理过程水质智能预测研究
5
作者 李欣怡 王功明 +1 位作者 王自鹏 乔俊飞 《化工学报》 北大核心 2025年第6期2828-2837,共10页
针对污水处理过程非平稳性、多工况性导致的水质难以高效、精准预测的问题,提出了一种事件触发的模糊神经网络(event-triggered fuzzy neural network,ETFNN)总磷预测模型设计方法,以事件的形式感知污水处理总磷状态演化过程的非平稳性... 针对污水处理过程非平稳性、多工况性导致的水质难以高效、精准预测的问题,提出了一种事件触发的模糊神经网络(event-triggered fuzzy neural network,ETFNN)总磷预测模型设计方法,以事件的形式感知污水处理总磷状态演化过程的非平稳性和多工况性,进而实现对总磷状态高效、精准的跟踪和预测。首先,利用总磷历史数据对模糊神经网络(fuzzy neural network,FNN)进行训练,根据能够反映多工况切换的训练误差变化趋势来定义事件;其次,设计事件触发的模型参数更新策略,当不同事件发生时,模型会触发变步长的参数更新行为,即实现对污水处理运行非平稳性、多工况性的感知和识别;同时,通过构造等效Markov决策过程的性能势函数证明了ETFNN模型学习过程的收敛性;最后,将ETFNN作为软测量模型,用于实际污水处理过程出水总磷建模与预测,并进行了综合分析。实验结果表明,所提出的ETFNN软测量模型不仅能提高总磷预测精度,还能以事件的形式识别并跳过无效数据,进而降低预测模型的计算复杂度。 展开更多
关键词 污水处理 水质预测 事件触发 模糊神经网络 Markov决策 性能势函数
在线阅读 下载PDF
基于IT2FBLS强化学习PID的MSWI过程炉膛温度控制
6
作者 田昊 汤健 +3 位作者 夏恒 王天峥 余文 乔俊飞 《自动化学报》 北大核心 2025年第7期1626-1641,共16页
城市固废焚烧(MSWI)过程中固有的非线性、时变性和不确定性导致领域专家需要凭借经验通过高频率手动干预进行炉膛温度控制.针对上述问题,为模拟专家的自适应机制,提出基于强化学习的比例-积分-微分(PID)自整定控制策略,即采用共享机制区... 城市固废焚烧(MSWI)过程中固有的非线性、时变性和不确定性导致领域专家需要凭借经验通过高频率手动干预进行炉膛温度控制.针对上述问题,为模拟专家的自适应机制,提出基于强化学习的比例-积分-微分(PID)自整定控制策略,即采用共享机制区间II型模糊宽度学习系统(IT2FBLS)拟合Actor-critic网络(ACN)进行PID参数优化.首先,采用共享机制IT2FBLS拟合ACN以克服焚烧过程的不确定性、减少计算消耗和确保紧凑的网络结构;然后,利用基于时间差分误差的梯度下降法更新ACN参数以实现快速学习;最后,利用李雅普诺夫方法,证明Actor-critic算法的收敛性和控制过程的稳定性.通过MSWI过程的实际运行数据仿真验证了该方法的有效性. 展开更多
关键词 城市固废焚烧 炉膛温度控制 强化学习 区间Ⅱ型模糊宽度学习系统 Actor-critic网络 共享机制 PID参数优化
在线阅读 下载PDF
基于多目标PSO混合优化的虚拟样本生成 被引量:4
7
作者 王丹丹 汤健 +1 位作者 夏恒 乔俊飞 《自动化学报》 EI CAS CSCD 北大核心 2024年第4期790-811,共22页
受限于检测技术难度、高时间与经济成本等原因,难测参数的软测量模型建模样本存在数量少、分布稀疏与不平衡等问题,严重制约了数据驱动模型的泛化性能.针对以上问题,提出一种基于多目标粒子群优化(Multi-objective particle swarm optim... 受限于检测技术难度、高时间与经济成本等原因,难测参数的软测量模型建模样本存在数量少、分布稀疏与不平衡等问题,严重制约了数据驱动模型的泛化性能.针对以上问题,提出一种基于多目标粒子群优化(Multi-objective particle swarm optimization, MOPSO)混合优化的虚拟样本生成(Virtual sample generation, VSG)方法.首先,设计综合学习粒子群优化算法的种群表征机制,使其能够同时编码用于连续变量和离散变量;然后,定义具有多阶段多目标特性的综合学习粒子群优化算法适应度函数,使其能够在确保模型泛化性能的同时最小化虚拟样本数量;最后,提出面向虚拟样本生成的多目标混合优化任务以改进综合学习粒子群优化算法,使其能够适应虚拟样本优选过程的变维特性并提高收敛速度.同时,首次借鉴度量学习提出用于评价虚拟样本质量的综合评价指标和分布相似指标.利用基准数据集和真实工业数据集验证了所提方法的有效性和优越性. 展开更多
关键词 小样本建模 虚拟样本生成 混合优化 多目标粒子群优化 分布相似度
在线阅读 下载PDF
城市固废焚烧智能算法测试与验证模块化半实物平台 被引量:2
8
作者 汤健 王天峥 +5 位作者 夏恒 崔璨麟 潘晓彤 郭海涛 王鼎 乔俊飞 《自动化学报》 EI CAS CSCD 北大核心 2024年第12期2432-2461,共30页
城市固废焚烧(Municipal solid waste incineration,MSWI)过程因工业现场的安全要求和控制系统的封闭特性导致离线研究的各类智能算法难以在线验证.此外,已有的实验室仿真平台难以模拟领域专家基于多模态数据进行智能感知、认知、决策... 城市固废焚烧(Municipal solid waste incineration,MSWI)过程因工业现场的安全要求和控制系统的封闭特性导致离线研究的各类智能算法难以在线验证.此外,已有的实验室仿真平台难以模拟领域专家基于多模态数据进行智能感知、认知、决策和控制的工业实际.针对上述问题,首先,在综述现有面向工业过程的仿真平台研究现状和所面临挑战的基础上,描述面向MSWI过程智能算法测试与验证平台的需求,提出并构建由多模态历史数据驱动系统、安全隔离与优化控制系统和多入多出回路控制系统组成的模块化半实物平台.然后,在实验室环境中完成平台硬件搭建、工业软件开发、仿真功能实现和典型场景验证,并移植部分模块至工业现场进行应用.最后,总结与展望模块化半实物平台的研究方向. 展开更多
关键词 城市固废焚烧 多模态数据 算法测试与验证 模块化半实物平台 安全隔离 工业软件
在线阅读 下载PDF
基于有效性分析的自组织模糊神经网络建模方法 被引量:1
9
作者 王雪峰 李文静 乔俊飞 《控制工程》 CSCD 北大核心 2024年第3期463-469,共7页
提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络... 提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络模型的有效性分析,通过累积触发的方式实现相应模糊规则的增加或删减,使网络模型在能够处理复杂非线性问题的同时降低其冗余性,使模型更为紧凑。采用梯度下降算法对网络模型进行训练。然后,对所提出的SOEFNN模型进行非线性系统仿真实验和污水处理过程中的出水生化需氧量预测建模,并与其他自组织模糊神经网络模型进行对比。仿真结果表明,所提出的SOEFNN模型能够很好地实现结构和参数的自适应调整,并且具有较好的逼近能力。 展开更多
关键词 有效性分析 自组织模糊神经网络 梯度下降算法 网络建模
在线阅读 下载PDF
基于仿真机理和改进回归决策树的二噁英排放建模
10
作者 夏恒 汤健 +1 位作者 余文 乔俊飞 《自动化学报》 EI CAS CSCD 北大核心 2024年第8期1601-1619,共19页
城市固废焚烧(Municipal solid waste incineration,MSWI)过程是“世纪之毒”二噁英(Dioxin,DXN)的重要排放源之一.截止目前为止,DXN的演化机理和实时检测仍是尚未解决的难题.现有研究主要基于离线化验数据构建数据驱动模型,DXN的检测... 城市固废焚烧(Municipal solid waste incineration,MSWI)过程是“世纪之毒”二噁英(Dioxin,DXN)的重要排放源之一.截止目前为止,DXN的演化机理和实时检测仍是尚未解决的难题.现有研究主要基于离线化验数据构建数据驱动模型,DXN的检测未有效结合燃烧过程机理.针对该问题,本文提出基于仿真机理和改进线性回归决策树(Linear regression decision tree,LRDT)的DXN排放建模.首先,采用基于床层固废燃烧模拟软件FLIC(Fluid dynamic incinerator code)和过程工程先进系统软件(Advanced system for process engineering Plus,Aspen Plus)耦合的数值仿真模型,获取蕴含多运行工况的虚拟机理数据;接着,利用虚拟机理数据构建基于改进LRDT的CO_(2)、CO和O_(2)燃烧状态表征变量模型;然后,以真实CO_(2)、CO、O_(2)作为输入和以DXN真值作为输出,构建多入单出LRDT的过程映射模型(Process mapping model,PMM),再利用该模型进行半监督学习和结构迁移得到机理映射模型1(Mechanism mapping models1,MMM1);最后,通过结构增量学习获得基于半监督迁移学习的MMM2模型.在实验室的半实物平台和北京某MSWI厂的边侧验证平台对所提方法进行了工业应用验证.实验结果证明了所提方法与研发的软测量系统可有效实现二噁英排放浓度在线检测. 展开更多
关键词 城市固废焚烧 二噁英 燃烧状态 数值仿真机理 线性回归决策树 半监督迁移学习
在线阅读 下载PDF
基于宽度混合森林回归的城市固废焚烧过程二噁英排放软测量 被引量:10
11
作者 夏恒 汤健 +1 位作者 崔璨麟 乔俊飞 《自动化学报》 EI CAS CSCD 北大核心 2023年第2期343-365,共23页
二噁英是城市固废焚烧过程排放的痕量有机污染物.受限于相关技术的复杂度和高成本,二噁英排放浓度检测的大时滞已成为制约城市固废焚烧过程优化控制的关键因素之一.虽然具有低成本、快响应、高精度等特点的数据驱动软测量模型能够有效... 二噁英是城市固废焚烧过程排放的痕量有机污染物.受限于相关技术的复杂度和高成本,二噁英排放浓度检测的大时滞已成为制约城市固废焚烧过程优化控制的关键因素之一.虽然具有低成本、快响应、高精度等特点的数据驱动软测量模型能够有效解决上述问题,但二噁英建模方法必须要契合数据的小样本、高维度特性.对此,提出了由特征映射层、潜在特征提取层、特征增强层和增量学习层组成的宽度混合森林回归软测量方法.首先,构建由随机森林和完全随机森林构成的混合森林组进行高维特征映射;其次,依据贡献率对全联接混合矩阵进行潜在特征提取,采用信息度量准则保证潜在有价值信息的最大化传递和最小化冗余,降低模型的复杂度和计算消耗;然后,基于所提取潜在信息训练特征增强层以增强特征表征能力;最后,通过增量式学习策略构建增量学习层后采用Moore-Penrose伪逆获得权重矩阵.在基准数据集和城市固废焚烧过程二噁英数据集上的实验结果表明了方法的有效性和优越性. 展开更多
关键词 城市固废焚烧 二噁英排放建模 宽度学习 宽度混合森林回归 潜在特征 增量学习
在线阅读 下载PDF
面向复杂异质数据的集成学习研究综述 被引量:9
12
作者 于涛 丁海旭 +1 位作者 黄卫民 乔俊飞 《控制工程》 CSCD 北大核心 2023年第8期1425-1435,共11页
复杂系统的实际过程数据具有多工况、高维度、多源多模态等异质特点,“大样本”中蕴含着“小样本”,其具有整体特征与局部特征。集成学习通过联合多个基学习器对复杂异质数据的内部规则进行提取,具有显著的数据挖掘优势,并已获得了广泛... 复杂系统的实际过程数据具有多工况、高维度、多源多模态等异质特点,“大样本”中蕴含着“小样本”,其具有整体特征与局部特征。集成学习通过联合多个基学习器对复杂异质数据的内部规则进行提取,具有显著的数据挖掘优势,并已获得了广泛关注。针对集成学习的重要应用价值,对其研究进展与发展前景进行了综述和展望。首先,基于设计思想对集成学习的结构和性质进行了归纳总结;接着,通过特征工程、基学习器选取和集成策略3个方面对集成学习的研究现状展开了论述;然后,介绍了集成学习在复杂工业问题、图像识别、指标预测、信息安全和临床诊断等不同领域中的实际应用情况;最后,指出了当前研究面临的挑战并展望了未来的研究方向。 展开更多
关键词 集成学习 异质数据 特征工程 基学习器 数据挖掘
在线阅读 下载PDF
基于ILSTM-AMSGD神经网络的时间序列预测方法 被引量:1
13
作者 杨爽 李文静 乔俊飞 《控制工程》 CSCD 北大核心 2023年第10期1793-1800,共8页
针对标准长短期记忆(long short-term memory,LSTM)神经网络的结构参数众多、训练过程耗时长问题,提出一种基于自适应动量随机梯度下降(adaptive momentum stochastic gradient descent,AMSGD)算法的改进型长短期记忆神经网络(ILSTM-AM... 针对标准长短期记忆(long short-term memory,LSTM)神经网络的结构参数众多、训练过程耗时长问题,提出一种基于自适应动量随机梯度下降(adaptive momentum stochastic gradient descent,AMSGD)算法的改进型长短期记忆神经网络(ILSTM-AMSGD神经网络),并将其用于时间序列预测中。首先,通过简化结构方程中的递归项权值,减少网络中所需训练的参数。其次,设计一种AMSGD算法对神经网络结构参数进行学习。最后,通过2个基准数据集和1个实际数据集对ILSTM-AMSGD神经网络模型在时间序列预测中的准确性和运行效率进行实验验证。结果表明,递归项权值简化方法可以提高模型的泛化能力,同时AMSGD算法加快了模型的收敛速度。与其他模型相比,ILSTM-AMSGD神经网络模型实现了对时间序列更加高效、准确的预测。 展开更多
关键词 时间序列预测 改进型长短期记忆神经网络 权重精简 梯度下降算法 自适应 动量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部