期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于支持向量机的渐进直推式分类学习算法 被引量:88
1
作者 陈毅松 汪国平 董士海 《软件学报》 EI CSCD 北大核心 2003年第3期451-460,共10页
支持向量机(support vector machine)是近年来在统计学习理论的基础上发展起来的一种新的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势.直推式学习(transductive inference)试图根据已知样本对特定的未... 支持向量机(support vector machine)是近年来在统计学习理论的基础上发展起来的一种新的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势.直推式学习(transductive inference)试图根据已知样本对特定的未知样本建立一套进行识别的方法和准则.较之传统的归纳式学习方法而言,直推式学习往往更具普遍性和实际意义.提出了一种基于支持向量机的渐进直推式分类学习算法,在少量有标签样本和大量无标签样本所构成的混合样本训练集上取得了良好的学习效果. 展开更多
关键词 支持向量机 渐进直推式分类学习算法 机器学习 统计学习理论
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部