目的:对二阶非自伴微分算子l(y)=-y″+q(x)y,0≤x<∞,在假定integral from 0 to ∞(x^2|q(x)|dx)<∞的条件下证明了特征展开。本文对方程的解做了更精确估计,然后直接采用回路积分,这样不但简化展开式的证明,且对q(x)的要求可降低...目的:对二阶非自伴微分算子l(y)=-y″+q(x)y,0≤x<∞,在假定integral from 0 to ∞(x^2|q(x)|dx)<∞的条件下证明了特征展开。本文对方程的解做了更精确估计,然后直接采用回路积分,这样不但简化展开式的证明,且对q(x)的要求可降低为integral from 0 to ∞(x|q(x)|dx)<∞。展开更多
文摘目的:对二阶非自伴微分算子l(y)=-y″+q(x)y,0≤x<∞,在假定integral from 0 to ∞(x^2|q(x)|dx)<∞的条件下证明了特征展开。本文对方程的解做了更精确估计,然后直接采用回路积分,这样不但简化展开式的证明,且对q(x)的要求可降低为integral from 0 to ∞(x|q(x)|dx)<∞。