近十年来基因组学和蛋白质组学的快速发展为医学生物学的研究提供了前所未有的机遇。一方面,大规模、高通量的基因和蛋白质的测定工作产生了大量有价值的各类数据;而另一方面,因数据标准的缺乏、数据兼容和整合的艰难而妨碍了人们去...近十年来基因组学和蛋白质组学的快速发展为医学生物学的研究提供了前所未有的机遇。一方面,大规模、高通量的基因和蛋白质的测定工作产生了大量有价值的各类数据;而另一方面,因数据标准的缺乏、数据兼容和整合的艰难而妨碍了人们去充分有效地共享数据,进而更好地促进各自领域的发展。生物信息学也因此成为当今生物医学研究发展必不可少的一个手段。本文就美国国家癌症研究所(National Cancer Institute,NCI)以癌症研究为试点所建立的一个生物信息核心框架caCORE(cancer Common Ontologic Reference Environment)作一简短介绍。展开更多
目的:应用支持向量机(support vector machine,SVM)构建ICU中急性肾功能损伤(acute kidney injury,AKI)患者住院死亡风险预测模型,并比较其与ICU中常用的简化急性生理评分(the simplified acute physiology scoreⅡ,SAPS-Ⅱ)的预测性能...目的:应用支持向量机(support vector machine,SVM)构建ICU中急性肾功能损伤(acute kidney injury,AKI)患者住院死亡风险预测模型,并比较其与ICU中常用的简化急性生理评分(the simplified acute physiology scoreⅡ,SAPS-Ⅱ)的预测性能。方法:使用重症监护医学信息市场(medical information mart for intensive careⅢ,MIMIC-Ⅲ)数据库作为数据来源。根据2012年国际改善全球肾脏病预后组织(Kidney Disease:Improving Global Outcomes,KDIGO)发表的《急性肾损伤临床实践指南》选取MIMIC-Ⅲ数据库中的AKI患者,使用SAPS-Ⅱ中所用到的全部变量构建SVM模型,同时,使用MIMIC-Ⅲ数据库定制本地化的SAPS-Ⅱ模型,并比较其与SVM模型的性能优劣。模型性能的评价方法使用五折交叉验证,评价指标使用受试者工作特征曲线下面积(area under the receiver operation characteristic curve,AUROC)、均方根误差(root mean squared error,RMSE)、灵敏度、特异度和准确率。此外,使用Bland-Altman图评估两模型预测结果的一致性。结果:共纳入19 044例AKI患者,死亡率为13.58%。五折交叉验证的结果显示,SVM模型和定制版SAPS-Ⅱ模型的平均AUROC分别为0.86和0.81,差异有统计学意义(t=13.0,P<0.001),SVM模型和定制版SAPS-Ⅱ模型的平均RMSE分别为0.29和0.31,差异有统计学意义(t=-9.6,P<0.001)。在灵敏度和约登指数方面,SVM模型也均优于定制版的SAPS-Ⅱ模型,差异均具有统计学意义(P分别为0.002和<0.001)。Bland-Altman图显示当患者死亡风险极高或者极低时,两模型预测结果的一致性较好。当患者死亡风险的不确定性较大时,两模型预测结果的一致性较差。结论:相比于传统的SAPS-Ⅱ模型,SVM模型的预测性能更优,且当患者的死亡风险不确定时,这种优势尤其明显;SVM模型更有利于AKI患者的死亡风险识别与早期干预,能有效地帮助ICU临床医生提高医疗质量,有很强的临床应用价值。展开更多
文摘近十年来基因组学和蛋白质组学的快速发展为医学生物学的研究提供了前所未有的机遇。一方面,大规模、高通量的基因和蛋白质的测定工作产生了大量有价值的各类数据;而另一方面,因数据标准的缺乏、数据兼容和整合的艰难而妨碍了人们去充分有效地共享数据,进而更好地促进各自领域的发展。生物信息学也因此成为当今生物医学研究发展必不可少的一个手段。本文就美国国家癌症研究所(National Cancer Institute,NCI)以癌症研究为试点所建立的一个生物信息核心框架caCORE(cancer Common Ontologic Reference Environment)作一简短介绍。
文摘目的:应用支持向量机(support vector machine,SVM)构建ICU中急性肾功能损伤(acute kidney injury,AKI)患者住院死亡风险预测模型,并比较其与ICU中常用的简化急性生理评分(the simplified acute physiology scoreⅡ,SAPS-Ⅱ)的预测性能。方法:使用重症监护医学信息市场(medical information mart for intensive careⅢ,MIMIC-Ⅲ)数据库作为数据来源。根据2012年国际改善全球肾脏病预后组织(Kidney Disease:Improving Global Outcomes,KDIGO)发表的《急性肾损伤临床实践指南》选取MIMIC-Ⅲ数据库中的AKI患者,使用SAPS-Ⅱ中所用到的全部变量构建SVM模型,同时,使用MIMIC-Ⅲ数据库定制本地化的SAPS-Ⅱ模型,并比较其与SVM模型的性能优劣。模型性能的评价方法使用五折交叉验证,评价指标使用受试者工作特征曲线下面积(area under the receiver operation characteristic curve,AUROC)、均方根误差(root mean squared error,RMSE)、灵敏度、特异度和准确率。此外,使用Bland-Altman图评估两模型预测结果的一致性。结果:共纳入19 044例AKI患者,死亡率为13.58%。五折交叉验证的结果显示,SVM模型和定制版SAPS-Ⅱ模型的平均AUROC分别为0.86和0.81,差异有统计学意义(t=13.0,P<0.001),SVM模型和定制版SAPS-Ⅱ模型的平均RMSE分别为0.29和0.31,差异有统计学意义(t=-9.6,P<0.001)。在灵敏度和约登指数方面,SVM模型也均优于定制版的SAPS-Ⅱ模型,差异均具有统计学意义(P分别为0.002和<0.001)。Bland-Altman图显示当患者死亡风险极高或者极低时,两模型预测结果的一致性较好。当患者死亡风险的不确定性较大时,两模型预测结果的一致性较差。结论:相比于传统的SAPS-Ⅱ模型,SVM模型的预测性能更优,且当患者的死亡风险不确定时,这种优势尤其明显;SVM模型更有利于AKI患者的死亡风险识别与早期干预,能有效地帮助ICU临床医生提高医疗质量,有很强的临床应用价值。