期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于遗传算法优化参数的支持向量机短期负荷预测方法 被引量:135
1
作者 吴景龙 杨淑霞 刘承水 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期180-184,共5页
通过研究参数选择和支持向量机预测能力的影响,建立利用遗传算法优化参数的支持向量机负荷预测系统。通过遗传算法对支持向量机(SVM)预测模型的各项参数进行寻优预处理,找到最优的参数取值,然后,代入支持向量机SVM预测模型中,得基于遗... 通过研究参数选择和支持向量机预测能力的影响,建立利用遗传算法优化参数的支持向量机负荷预测系统。通过遗传算法对支持向量机(SVM)预测模型的各项参数进行寻优预处理,找到最优的参数取值,然后,代入支持向量机SVM预测模型中,得基于遗传算法的支持向量机(GA-SVM)模型,利用此模型对短期电力负荷进行预测研究。通过实例验证,选择河北某地区2005-03-02至2007-05-22每天各个时点的数据进行分析,并且选择SVM模型与BP(Back propagation)神经网络进行对比。研究结果表明:用GA-SVM算法得到的均方根相对误差仅为2.25%,比用SVM模型和BP神经网络所得的均方根相对误差比分别低0.58%和1.93%。所提出的测试方法克服了传统参数选择方法存在的缺点(如研究者往往凭经验和有限的实验给定一组参数,而不讨论参数制定的合理性),提高了支持向量机的预测精度。 展开更多
关键词 遗传算法 支持向量机 参数优化 负荷预测
在线阅读 下载PDF
基于构造型神经网络的分类算法 被引量:3
2
作者 刘承水 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第3期737-741,共5页
提出一种基于构造型神经网络的最大密度覆盖分类算法,以便更加有效地解决模式识别的问题。首先,引入一个密度估计函数,用该函数对样本数据进行聚类分析,找出同类样本中具有最大密度的样本数据点,然后,在特征空间里作超平面与球面相交,得... 提出一种基于构造型神经网络的最大密度覆盖分类算法,以便更加有效地解决模式识别的问题。首先,引入一个密度估计函数,用该函数对样本数据进行聚类分析,找出同类样本中具有最大密度的样本数据点,然后,在特征空间里作超平面与球面相交,得到1个球面覆盖领域,从而将神经网络训练问题转化为点集覆盖问题。该算法的特点是直接对样本数据进行处理,有效地克服了传统神经网络训练时间长、学习复杂的问题,同时也考虑了神经网络规模的优化问题。计算机仿真实验结果证实了该算法的有效性。 展开更多
关键词 模式识别 神经网络 覆盖 神经元 分类算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部