期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
GNSS失锁下Tent-ASO-BP辅助GNSS/INS松组合导航算法 被引量:1
1
作者 柳絮 王坚 +1 位作者 肖星星 郭楠 《山东科技大学学报(自然科学版)》 CAS 北大核心 2024年第6期24-33,共10页
GNSS/INS松组合导航是目前应用最广泛的车载导航系统之一,但在长隧道、地库等遮蔽区域,卫星信号长时间失锁导致定位精度显著下降。本研究提出一种Tent-ASO-BP辅助的GNSS/INS松组合导航算法。首先,结合混沌帐篷映射(Tent)改进的原子搜索... GNSS/INS松组合导航是目前应用最广泛的车载导航系统之一,但在长隧道、地库等遮蔽区域,卫星信号长时间失锁导致定位精度显著下降。本研究提出一种Tent-ASO-BP辅助的GNSS/INS松组合导航算法。首先,结合混沌帐篷映射(Tent)改进的原子搜索算法(ASO)优化BP神经网络模型的权值及阈值,构建Tent-ASO-BP智能预测模型;然后,利用开阔环境下GNSS/INS导航数据训练Tent-ASO-BP智能模型,在GNSS隧道失锁环境下利用自主学习后的Tent-ASO-BP模型预测隧道内的位置参数;最后,利用车载实测数据进行验证。结果表明,Tent-ASO-BP预测模型总体精度明显高于GNSS/INS松组合模型精度,Tent-ASO-BP预测模型的水平方向误差为15.4394 m;GNSS/INS松组合误差为20.4292 m,水平精度提升了24.42%,预测模型能够有效解决卫星信号长时间失锁时GNSS/INS松组合导航连续高精度定位难题。 展开更多
关键词 全球导航卫星系统(GNSS) GNSS失锁导航 混沌帐篷映射(Tent) 原子搜索算法(ASO) BP神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部