期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向肝细胞癌微血管侵犯评估的高效多模态贡献度感知网络研究
1
作者 贾熹滨 于高远 +3 位作者 王珞 邓玉辉 杨大为 杨正汉 《电子学报》 EI CAS CSCD 北大核心 2024年第6期2053-2066,共14页
微血管侵犯(MicroVascular Invasion,MVI)是肝细胞癌(HepatoCellular Carcinoma,HCC)切除或移植患者出现早期复发和长期预后不良的重要影响因素,因此在HCC患者术前评估是否存在MVI具有非常重要的临床价值.近年来,深度学习为MVI影像诊断... 微血管侵犯(MicroVascular Invasion,MVI)是肝细胞癌(HepatoCellular Carcinoma,HCC)切除或移植患者出现早期复发和长期预后不良的重要影响因素,因此在HCC患者术前评估是否存在MVI具有非常重要的临床价值.近年来,深度学习为MVI影像诊断评估提供了有价值的解决方法,但受数据标注收集困难等因素的影响,目前研究多独立利用电子计算机断层扫描(Computed Tomography,CT)或核磁共振成像(Magnetic Resonance Imaging,MRI)手段采集影像中的单模态序列,缺乏对各成像手段中多模态序列的综合应用.在小样本场景下,为有效利用多模态序列数据,提高诊断效能,本文提出一种高效多模态贡献度感知网络.该网络可以利用模态分组卷积和高效多模态自适应加权模块,在极少计算开销的引入下,学习CT或MRI的各模态影像信息在复杂多样的MVI表象下的诊断贡献.本文在三甲医院收集的临床数据集上进行实验,结果表明该网络模型可以在少量有标注数据的支持下,取得优于多种基于注意力机制的神经网络模型的MVI诊断性能,为专业医师的诊断分析提供了有效参考. 展开更多
关键词 微血管侵犯评估 多模态融合 高效多模态贡献度感知 模态分组卷积 高效多模态自适应加权
在线阅读 下载PDF
领域对齐对抗的无监督跨领域文本情感分析算法 被引量:3
2
作者 贾熹滨 曾檬 +1 位作者 米庆 胡永利 《计算机研究与发展》 EI CSCD 北大核心 2022年第6期1255-1270,共16页
在实际应用场景中,情感分析技术为自动判别文本情感极性提供了有效的决策及解决方案,但是文本情感分析技术依赖于大量的标定样本.为了减小对人工标注的依赖,有研究者提出了基于领域自适应的跨领域情感分析技术.该技术面向跨领域文本情... 在实际应用场景中,情感分析技术为自动判别文本情感极性提供了有效的决策及解决方案,但是文本情感分析技术依赖于大量的标定样本.为了减小对人工标注的依赖,有研究者提出了基于领域自适应的跨领域情感分析技术.该技术面向跨领域文本情感分析任务,将经由标定样本训练的源领域模型,迁移至无标定的目标领域.然而目前的领域自适应技术仅从单个角度进行迁移,即减小领域专有特征差异或提取领域不变特征.因此考虑到跨领域文本数据同时包含领域专有特征和领域不变特征的特点,提出了一种领域对齐对抗的无监督跨领域文本情感分析算法.该算法通过渐进式的迁移策略,逐层减小不同语义层的领域差异,并在高层语义子空间通过协同优化的领域自适应算法,实现跨领域文本数据的领域知识迁移.在2个公开跨领域文本情感数据集上的24组跨领域文本情感分类实验结果表明,与4类领域自适应算法中代表性的和当前表现最优的方法相比,领域对齐对抗的无监督跨领域文本情感分析算法在24组实验中取得了最高的平均分类准确率,同时结合迁移性能分析结果和特征分布可视化结果,证明该算法一定程度上提升了现有无监督跨领域文本情感分析算法的分类性能和迁移性能. 展开更多
关键词 跨领域情感分类 迁移学习 无监督领域自适应 情感分析 协同优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部