期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
中文医疗文本中的嵌套实体识别方法 被引量:5
1
作者 闫璟辉 宗成庆 徐金安 《软件学报》 EI CSCD 北大核心 2024年第6期2923-2935,共13页
实体识别是信息抽取的关键技术.相较于普通文本,中文医疗文本的实体识别任务往往面对大量的嵌套实体.以往识别实体的方法往往忽视了医疗文本本身所特有的实体嵌套规则而直接采用序列标注方法,为此,提出一种融合实体嵌套规则的中文实体... 实体识别是信息抽取的关键技术.相较于普通文本,中文医疗文本的实体识别任务往往面对大量的嵌套实体.以往识别实体的方法往往忽视了医疗文本本身所特有的实体嵌套规则而直接采用序列标注方法,为此,提出一种融合实体嵌套规则的中文实体识别方法.所提方法在训练过程中将实体的识别任务转化为实体的边界识别与边界首尾关系识别的联合训练任务,在解码过程中结合从实际医疗文本中所总结出来的实体嵌套规则对解码结果进行过滤,从而使得识别结果能够符合实际文本中内外层实体嵌套组合的组成规律.在公开的医疗文本实体识别的实验上取得良好的效果.数据集上的实验表明,所提方法在嵌套类型实体识别性能上显著优于已有的方法,在整体准确率方面比最先进的方法提高0.5%. 展开更多
关键词 实体识别 中文文本 医疗领域 嵌套实体识别 边界识别
在线阅读 下载PDF
基于融合图像与运动量的奶牛行为识别方法 被引量:41
2
作者 顾静秋 王志海 +1 位作者 高荣华 吴华瑞 《农业机械学报》 EI CAS CSCD 北大核心 2017年第6期145-151,共7页
为从海量监控视频中快速、准确识别影响奶牛繁殖与健康的行为,以小育成牛舍与泌乳牛舍中400头奶牛为研究对象,分析了奶牛在活动区与奶厅匝道的运动行为,提出了一种基于图像熵的奶牛目标对象识别方法,通过最小包围盒面积计算与目标对象... 为从海量监控视频中快速、准确识别影响奶牛繁殖与健康的行为,以小育成牛舍与泌乳牛舍中400头奶牛为研究对象,分析了奶牛在活动区与奶厅匝道的运动行为,提出了一种基于图像熵的奶牛目标对象识别方法,通过最小包围盒面积计算与目标对象轮廓图,实时捕获奶牛爬跨行为与蹄部、背部特征,融合被识别奶牛连续7 d的运动量,判断影响奶牛健康繁殖的异常行为。试验结果表明,利用本文方法对监控视频内奶牛目标对象、运动行为进行实时监测,有效监控识别奶牛发情、蹄病行为准确率超过80%,发情漏检率最低为3.28%,蹄病漏检率最低为5.32%,提高了规模化养殖管理效率。 展开更多
关键词 奶牛行为 目标分割 图像熵 图像矩 运动量 智能分析
在线阅读 下载PDF
一种基于时间衰减模型的数据流闭合模式挖掘方法 被引量:16
3
作者 韩萌 王志海 原继东 《计算机学报》 EI CSCD 北大核心 2015年第7期1473-1483,共11页
数据流是随着时间顺序快速变化的和连续的,对其进行频繁模式挖掘时会出现概念漂移现象.在一些数据流应用中,通常认为最新的数据具有最大的价值.数据流挖掘会产生大量无用的模式,为了减少无用模式且保证无损压缩,需要挖掘闭合模式.因此,... 数据流是随着时间顺序快速变化的和连续的,对其进行频繁模式挖掘时会出现概念漂移现象.在一些数据流应用中,通常认为最新的数据具有最大的价值.数据流挖掘会产生大量无用的模式,为了减少无用模式且保证无损压缩,需要挖掘闭合模式.因此,提出了一种基于时间衰减模型和闭合算子的数据流闭合模式挖掘方式TDMCS(Time-Decay-Model-based Closed frequent pattern mining on data Stream).该算法采用时间衰减模型来区分滑动窗口内的历史和新近事务权重,使用闭合算子提高闭合模式挖掘的效率,设计使用最小支持度-最大误差率-衰减因子的三层架构避免概念漂移,设计一种均值衰减因子平衡算法的高查全率和高查准率.实验分析表明该算法适用于挖掘高密度、长模式的数据流;且具有较高的效率,在不同大小的滑动窗口条件下性能表现是稳态的,同时也优于其他同类算法. 展开更多
关键词 事务数据流 数据流挖掘 频繁模式挖掘 闭合模式挖掘 时间衰减模型 概念漂移
在线阅读 下载PDF
一种频繁模式决策树处理可变数据流 被引量:11
4
作者 韩萌 王志海 丁剑 《计算机学报》 EI CSCD 北大核心 2016年第8期1541-1554,共14页
数据流中可能包含大量的无用信息或者噪声,频繁模式挖掘可以去除这些无用信息,且频繁模式比单个属性包含了更多的信息.因此,挖掘频繁的、有区分力的模式,可以用于有效的分类.该文提出一个两步骤算法PatHT(Pattern-based Hoeffding Tree... 数据流中可能包含大量的无用信息或者噪声,频繁模式挖掘可以去除这些无用信息,且频繁模式比单个属性包含了更多的信息.因此,挖掘频繁的、有区分力的模式,可以用于有效的分类.该文提出一个两步骤算法PatHT(Pattern-based Hoeffding Tree)生成决策树用于可变数据流分类.第一步,设计增量更新算法CCFPM(Constraintsbased and Closed Frequent Pattern Mining),用于生成闭合约束频繁模式集合CFPSet(Closed Frequent Pattern Set).CCFPM中采用滑动窗口模型和时间衰减模型处理实例,设计一种均值衰减因子设置方法得到高完整性和准确性的模式集合.第二步,增量更新方法 HTreeGrow(Hoeffding Tree Growing)生成基于CFPSet的概念漂移决策树.该方法使用概念漂移检测器监督概念改变,自动调整分类模型.针对高密度和低密度的数据流,设计了不同使用模式集合的方法.在真实和模拟数据流上的实验分析表明,与其他同类算法相比,提出的方法对稳态数据流处理时可以明显提高正确率或可以明显降低训练时间,在处理不同概念漂移特性的可变数据流时也具有很好的分类效果. 展开更多
关键词 分类 可变数据流 决策树 频繁模式挖掘 Hoeffding树 数据挖掘
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部