期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于BEV占位预测的激光-毫米波雷达融合目标检测算法
1
作者
李越豪
王邓江
+2 位作者
鉴海防
王洪昌
程清华
《计算机科学》
CSCD
北大核心
2024年第6期215-222,共8页
激光雷达工作环境中的光束衰减和目标遮挡会导致输出点云出现远端稀疏的问题,从而引起基于激光雷达的3D目标检测算法的检测精度随距离衰减的现象。针对这一问题,提出了一种基于鸟瞰图视角(BEV)空间内目标占位预测的激光-毫米波雷达融合...
激光雷达工作环境中的光束衰减和目标遮挡会导致输出点云出现远端稀疏的问题,从而引起基于激光雷达的3D目标检测算法的检测精度随距离衰减的现象。针对这一问题,提出了一种基于鸟瞰图视角(BEV)空间内目标占位预测的激光-毫米波雷达融合目标检测算法。首先提出了一种简化的BEV占位预测子网络,用于生成位置相关的毫米波雷达特征,同时有助于解决毫米波雷达数据稀疏带来的网络收敛困难的问题。然后,为了实现跨模态特征融合,设计了一种基于BEV空间特征关联的多尺度激光-毫米波雷达特征融合层结构。在nuScenes数据集上进行实验,结果表明,所提出的毫米波雷达分支网络的平均检测精度(mAP)达到21.6%,推理时间为8.3ms。在加入融合层结构后,多模态检测算法较基线算法CenterPoint的mAP提升了2.9%,同时增加的额外推理时间开销仅为8.6ms,在距离传感器30m位置处,多模态算法对于nuScenes数据集中10个类别的检测精度达成率分别较CenterPoint提升了2.1%~16.0%。
展开更多
关键词
3D目标检测
激光雷达
毫米波雷达
占位预测
鸟瞰图视角
特征融合
在线阅读
下载PDF
职称材料
题名
基于BEV占位预测的激光-毫米波雷达融合目标检测算法
1
作者
李越豪
王邓江
鉴海防
王洪昌
程清华
机构
中国科学院半导体
研究
所固态光电信息技术实验室
中国科学院大学材料科学与光电技术学院
北京万集科技股份有限公司苏州研究院
出处
《计算机科学》
CSCD
北大核心
2024年第6期215-222,共8页
基金
科技创新2030-“新一代人工智能”重大项目(2022ZD0116300)。
文摘
激光雷达工作环境中的光束衰减和目标遮挡会导致输出点云出现远端稀疏的问题,从而引起基于激光雷达的3D目标检测算法的检测精度随距离衰减的现象。针对这一问题,提出了一种基于鸟瞰图视角(BEV)空间内目标占位预测的激光-毫米波雷达融合目标检测算法。首先提出了一种简化的BEV占位预测子网络,用于生成位置相关的毫米波雷达特征,同时有助于解决毫米波雷达数据稀疏带来的网络收敛困难的问题。然后,为了实现跨模态特征融合,设计了一种基于BEV空间特征关联的多尺度激光-毫米波雷达特征融合层结构。在nuScenes数据集上进行实验,结果表明,所提出的毫米波雷达分支网络的平均检测精度(mAP)达到21.6%,推理时间为8.3ms。在加入融合层结构后,多模态检测算法较基线算法CenterPoint的mAP提升了2.9%,同时增加的额外推理时间开销仅为8.6ms,在距离传感器30m位置处,多模态算法对于nuScenes数据集中10个类别的检测精度达成率分别较CenterPoint提升了2.1%~16.0%。
关键词
3D目标检测
激光雷达
毫米波雷达
占位预测
鸟瞰图视角
特征融合
Keywords
3D Object detection
LiDAR
Radar
Occupancy prediction
Bird’s eye view
Feature fusion
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于BEV占位预测的激光-毫米波雷达融合目标检测算法
李越豪
王邓江
鉴海防
王洪昌
程清华
《计算机科学》
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部