期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
PGS-YOLO:一种轻量高效的带钢表面缺陷检测模型
1
作者 马俊杰 张继红 +2 位作者 王强 刘文广 吴振奎 《电子测量与仪器学报》 北大核心 2025年第8期156-167,共12页
钢材是我国的支柱产业,其表面质量问题是影响钢材性能与价格的关键。针对带钢表面缺陷检测存在精度差、效率低、模型复杂度高等诸多问题,提出并改进了一种轻量级的带钢表面缺陷检测模型(PGS-YOLO)。首先,引入更为灵活的PReLU激活函数,... 钢材是我国的支柱产业,其表面质量问题是影响钢材性能与价格的关键。针对带钢表面缺陷检测存在精度差、效率低、模型复杂度高等诸多问题,提出并改进了一种轻量级的带钢表面缺陷检测模型(PGS-YOLO)。首先,引入更为灵活的PReLU激活函数,通过可学习参数自适应调整输入数据负区域斜率,从而提高模型定位缺陷的准确性;其次,将Re-VGG融入C3,构建轻量高效的Re-C3模块,降低模型复杂度并提高计算效率,进一步地,基于GELAN网络联合设计了全新的G-GELAN特征提取-融合模块,通过融合多尺度、多层次的高级语义信息,增强模型对不同类型缺陷及复杂背景的适应能力;最后,采用轻量级的SCDown下采样操作,在减少冗余计算的同时提升特征融合的丰富度。在NEU-DET数据集上的实验结果表明,该模型相比基准模型平均精度均值(mAP)提高6.7%,达到79.9%;参数量和计算量分别减少29.7%、27.2%,帧率提升2.7%,更好地平衡了检测精度、推理速度与轻量化之间的关系。此外,该模型在WF10-DET数据集和PCB_DATASET数据集上均表现出良好的泛化能力,满足实际工程部署需求,预期在工程应用中具有重要推广应用价值。 展开更多
关键词 带钢表面缺陷检测 PPeLU 轻量化 G-GELAN SCDown
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部