以荷叶为原料,采用多阶炭化的方法,得到高比表面积(572.1 m^2/g)和存在大量多级孔尤其微孔(平均孔径3.31 nm)结构居多的炭骨架,继而用高能球磨法及熔融法与单质硫进行复合制备出不同含硫量(48wt%,62wt%,71wt%)碳/硫复合材料。通过XRD、F...以荷叶为原料,采用多阶炭化的方法,得到高比表面积(572.1 m^2/g)和存在大量多级孔尤其微孔(平均孔径3.31 nm)结构居多的炭骨架,继而用高能球磨法及熔融法与单质硫进行复合制备出不同含硫量(48wt%,62wt%,71wt%)碳/硫复合材料。通过XRD、FESEM、EDS和TG对材料结构和形貌进行表征,结果表明硫被均匀固定在多孔碳材料的类石墨烯层状结构和类微米棒结构中。充放电测试表明,62wt%含硫量的复合正极材料性能表现最佳,在0.1C,1.2~2.8 V范围内充放电,首次放电比容量达1246 m Ah/g,100次循环后依旧保持在600 m Ah/g,制备出的复合正极材料对多硫化物的"穿梭效应"起到了抑制作用。展开更多
以CuO为铜源,葡萄糖为碳源采用原位还原固相法合成LiFePO_4/(C+Cu)材料。采用XRD、SEM、EDS、LAND电池测试系统及电化学工作站等对材料的晶体结构、形貌和电化学性能进行测试,重点分析了材料的低温特性。结果表明:添加10%的葡萄糖合成的...以CuO为铜源,葡萄糖为碳源采用原位还原固相法合成LiFePO_4/(C+Cu)材料。采用XRD、SEM、EDS、LAND电池测试系统及电化学工作站等对材料的晶体结构、形貌和电化学性能进行测试,重点分析了材料的低温特性。结果表明:添加10%的葡萄糖合成的LiFePO_4/(C+Cu)展示出较好的电化学性能,尤其是低温性能。25℃,0.1C下首次放电比容量高达151.1 m Ah/g,-20℃时0.1C首次放电比容量107.6 mAh/g,为25℃相应倍率放电比容量的71.2%。展开更多
文摘以荷叶为原料,采用多阶炭化的方法,得到高比表面积(572.1 m^2/g)和存在大量多级孔尤其微孔(平均孔径3.31 nm)结构居多的炭骨架,继而用高能球磨法及熔融法与单质硫进行复合制备出不同含硫量(48wt%,62wt%,71wt%)碳/硫复合材料。通过XRD、FESEM、EDS和TG对材料结构和形貌进行表征,结果表明硫被均匀固定在多孔碳材料的类石墨烯层状结构和类微米棒结构中。充放电测试表明,62wt%含硫量的复合正极材料性能表现最佳,在0.1C,1.2~2.8 V范围内充放电,首次放电比容量达1246 m Ah/g,100次循环后依旧保持在600 m Ah/g,制备出的复合正极材料对多硫化物的"穿梭效应"起到了抑制作用。
文摘以CuO为铜源,葡萄糖为碳源采用原位还原固相法合成LiFePO_4/(C+Cu)材料。采用XRD、SEM、EDS、LAND电池测试系统及电化学工作站等对材料的晶体结构、形貌和电化学性能进行测试,重点分析了材料的低温特性。结果表明:添加10%的葡萄糖合成的LiFePO_4/(C+Cu)展示出较好的电化学性能,尤其是低温性能。25℃,0.1C下首次放电比容量高达151.1 m Ah/g,-20℃时0.1C首次放电比容量107.6 mAh/g,为25℃相应倍率放电比容量的71.2%。