期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于数据分解的上海港集装箱吞吐量预测模型 被引量:11
1
作者 冯宏祥 GRIFOLL Manel +1 位作者 AGUSTI Martinmallofre 郑彭军 《中国航海》 CSCD 北大核心 2019年第2期132-138,共7页
根据“分而治之”的框架,分别运用经验模式分解(Empirical Mode Decomposition, EMD)算法和季节性自回归积分滑动平均(Seasonal Autoregressive Integrated Moving Average, SARIMA)算法,将月度集装箱吞吐量时间系列数据分解为不同特征... 根据“分而治之”的框架,分别运用经验模式分解(Empirical Mode Decomposition, EMD)算法和季节性自回归积分滑动平均(Seasonal Autoregressive Integrated Moving Average, SARIMA)算法,将月度集装箱吞吐量时间系列数据分解为不同特征的分量,用支持向量回归(Support Vector Regression, SVR)模型分别对各分量进行预测,EMD-SVR模型和SARIMA-SVR模型预测结果的平均绝对百分误差(Mean Absolute Percentage Errors, MAPE)分别为 5.18%和7.26%,与港口实际吞吐量均较为一致,优于SVR模型的8.55%、自回归积分滑动平均(Autoregressive Integrated Moving Average, ARIMA)模型的11.8%和灰色系统(Grey Model, GM(1,1))模型的10.1%,验证数据分解方法在上海港集装箱月度吞吐量预测中的可行性,支持间接性预测模型精度高于直接模型的观点。 展开更多
关键词 经验模式分解 支持向量回归 自回归积分滑动平均模型 灰色预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部