期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于k-means机器学习方法的气固循环流化床颗粒聚团特性
被引量:
2
1
作者
孙俭
张海勇
+4 位作者
王成秀
孙泽能
蓝兴英
高金森
祝京旭
《化工进展》
北大核心
2025年第2期625-634,共10页
循环流化床因其优良的气固接触特性在工业生产中的应用十分广泛。颗粒聚团的存在影响着气固相互作用和传热传质,进而影响产品收率和选择性。为了更高效和深入地研究循环流化床内的颗粒聚团现象,本研究利用高速摄像系统对U_(g)=5~9m/s、G...
循环流化床因其优良的气固接触特性在工业生产中的应用十分广泛。颗粒聚团的存在影响着气固相互作用和传热传质,进而影响产品收率和选择性。为了更高效和深入地研究循环流化床内的颗粒聚团现象,本研究利用高速摄像系统对U_(g)=5~9m/s、G_(s)=50~300kg/(m^(2)·s)的二维循环流化床内的流场结构进行了可视化采样。采用k-means机器学习算法辅助图像处理,实现复杂流场中颗粒聚团的识别以及定量表征。结果表明,当U_(g)=9m/s时,随着G_(s)由50kg/(m^(2)·s)增大至300kg/(m^(2)·s),颗粒聚团频率由116Hz增加到327Hz,增长了近2倍。平均颗粒聚团浓度在横向截面中心区域y/Y=0~0.7处分布较为均匀,在y/Y=0.7~0.9的边壁处迅速增大。边壁处平均颗粒聚团浓度的变化幅度约为中心区域的3倍。平均颗粒聚团速度以及平均颗粒等效直径在横向上均表现出相同的变化趋势,均由中心向边壁递减。结合实验数据,对不同聚团参数进行拟合,获得了定量预测各个参数的关联式。对比实验数据与预测数据发现,本实验建立的定量关联式获得的预测结果相对误差均在30%以下。本研究结果定量地揭示了循环流化床内各颗粒聚团特性的分布规律,可以为循环流化床气固流动模型开发和过程强化提供数据参考。
展开更多
关键词
流态化
循环流化床
k-means机器学习
颗粒聚团
预测
在线阅读
下载PDF
职称材料
题名
基于k-means机器学习方法的气固循环流化床颗粒聚团特性
被引量:
2
1
作者
孙俭
张海勇
王成秀
孙泽能
蓝兴英
高金森
祝京旭
机构
中国石油
大学
(北京)
化学
工程
与环境
学院
加拿大西安大略大学化学与生物工程学院
出处
《化工进展》
北大核心
2025年第2期625-634,共10页
基金
国家自然科学基金面上项目(21978320)
国家自然科学基金创新群体项目(22021004)。
文摘
循环流化床因其优良的气固接触特性在工业生产中的应用十分广泛。颗粒聚团的存在影响着气固相互作用和传热传质,进而影响产品收率和选择性。为了更高效和深入地研究循环流化床内的颗粒聚团现象,本研究利用高速摄像系统对U_(g)=5~9m/s、G_(s)=50~300kg/(m^(2)·s)的二维循环流化床内的流场结构进行了可视化采样。采用k-means机器学习算法辅助图像处理,实现复杂流场中颗粒聚团的识别以及定量表征。结果表明,当U_(g)=9m/s时,随着G_(s)由50kg/(m^(2)·s)增大至300kg/(m^(2)·s),颗粒聚团频率由116Hz增加到327Hz,增长了近2倍。平均颗粒聚团浓度在横向截面中心区域y/Y=0~0.7处分布较为均匀,在y/Y=0.7~0.9的边壁处迅速增大。边壁处平均颗粒聚团浓度的变化幅度约为中心区域的3倍。平均颗粒聚团速度以及平均颗粒等效直径在横向上均表现出相同的变化趋势,均由中心向边壁递减。结合实验数据,对不同聚团参数进行拟合,获得了定量预测各个参数的关联式。对比实验数据与预测数据发现,本实验建立的定量关联式获得的预测结果相对误差均在30%以下。本研究结果定量地揭示了循环流化床内各颗粒聚团特性的分布规律,可以为循环流化床气固流动模型开发和过程强化提供数据参考。
关键词
流态化
循环流化床
k-means机器学习
颗粒聚团
预测
Keywords
fluidization
circulating fluidized bed
k-means machine learning
cluster
prediction
分类号
TQ021.1 [化学工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于k-means机器学习方法的气固循环流化床颗粒聚团特性
孙俭
张海勇
王成秀
孙泽能
蓝兴英
高金森
祝京旭
《化工进展》
北大核心
2025
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部