The effects of emulsifier molecular architecture on phase inversion process including the critical water content at phase inversion point as well as the particle size are investigated. It is found that the water conte...The effects of emulsifier molecular architecture on phase inversion process including the critical water content at phase inversion point as well as the particle size are investigated. It is found that the water content at phase inversion point reaches a maximum when the molar ratio of the hydrophilic component PEG10000 to the hydrophobic component bisphenol A epoxy resin E20 is equal to 1∶1, meanwhile, the particle size reaches a minimum (about 100 nm). From the experimental results, it can be seen that to alter the molecular architecture of the emulsifier is an effective method to control the size of the waterborne particles prepared by phase inversion emulsification technique.展开更多
Surfactant template synthesis of mesoporous silica monolith was carried out via modified fast sol gel process. It was easy to obtain crack free silica monolith due to low volume shrinkage during the gelation. The morp...Surfactant template synthesis of mesoporous silica monolith was carried out via modified fast sol gel process. It was easy to obtain crack free silica monolith due to low volume shrinkage during the gelation. The morphology of the titled silica was characterized by transmission electron microscopy and X ray diffraction. The results showed that the pores were worm like and the pore size was about 4 nm. Further nitrogen isothermal absorption experiment indicated that the specific area of the titled material was 391 m 2/g, which was comparable with the reported value 306 m 2/g in literature.展开更多
Based on the insight into the mechanism of phase inversion emulsification in the presence of curing agents, a new method called surfactant free phase inversion emulsification was proposed to prepare epoxy resin waterb...Based on the insight into the mechanism of phase inversion emulsification in the presence of curing agents, a new method called surfactant free phase inversion emulsification was proposed to prepare epoxy resin waterborne dispersions. The waterborne particles are in sub micron range with narrow size distribution. Transparent cured films could be formed from the dispersions even at ambient temperature. The stability of the dispersions could be enhanced by post polymerization at a high temperature for some time. The knowledge about the phase inversion and the stability of the waterborne dispersions might provide a new way to enhance oil recovery.展开更多
文摘The effects of emulsifier molecular architecture on phase inversion process including the critical water content at phase inversion point as well as the particle size are investigated. It is found that the water content at phase inversion point reaches a maximum when the molar ratio of the hydrophilic component PEG10000 to the hydrophobic component bisphenol A epoxy resin E20 is equal to 1∶1, meanwhile, the particle size reaches a minimum (about 100 nm). From the experimental results, it can be seen that to alter the molecular architecture of the emulsifier is an effective method to control the size of the waterborne particles prepared by phase inversion emulsification technique.
文摘Surfactant template synthesis of mesoporous silica monolith was carried out via modified fast sol gel process. It was easy to obtain crack free silica monolith due to low volume shrinkage during the gelation. The morphology of the titled silica was characterized by transmission electron microscopy and X ray diffraction. The results showed that the pores were worm like and the pore size was about 4 nm. Further nitrogen isothermal absorption experiment indicated that the specific area of the titled material was 391 m 2/g, which was comparable with the reported value 306 m 2/g in literature.
文摘Based on the insight into the mechanism of phase inversion emulsification in the presence of curing agents, a new method called surfactant free phase inversion emulsification was proposed to prepare epoxy resin waterborne dispersions. The waterborne particles are in sub micron range with narrow size distribution. Transparent cured films could be formed from the dispersions even at ambient temperature. The stability of the dispersions could be enhanced by post polymerization at a high temperature for some time. The knowledge about the phase inversion and the stability of the waterborne dispersions might provide a new way to enhance oil recovery.