期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于高光谱植被指数的水稻LAI遥感估算
被引量:
9
1
作者
张敏
郭涛
+5 位作者
刘轲
黄平
喻君
刘仕川
刘泳伶
李源洪
《西南农业学报》
CSCD
北大核心
2022年第11期2651-2658,共8页
【目的】探索植被指数(VI)及其波段选择、回归建模方法、训练样本选取三方面因素对基于统计模型的水稻叶面积指数(LAI)高光谱遥感估算的影响,构建县域水稻LAI估算模型,并在四川省凉山彝族自治州昭觉县开展实证应用。【方法】本文基于不...
【目的】探索植被指数(VI)及其波段选择、回归建模方法、训练样本选取三方面因素对基于统计模型的水稻叶面积指数(LAI)高光谱遥感估算的影响,构建县域水稻LAI估算模型,并在四川省凉山彝族自治州昭觉县开展实证应用。【方法】本文基于不同样本量的3套训练数据,分别对增强型植被指数(EVI)、修正三角植被指数2(MTVI2)、归一化差值植被指数(NDVI)和修正比值植被指数(MSR)开展波段选择。在此基础上,以1种VI作为LAI的特征参量,试用指数回归(ER)和人工神经网络(ANN),构建县域水稻LAI估算模型。计算LAI估算值和实测值之间的决定系数(R^(2))和均方根误差(RMSE),开展估算精度验证。【结果】①基于EVI或MTVI2的LAI估算精度优于NDVI和MSR。以ANN模型为例,基于优选波段的EVI和MTVI2得到的R^(2)分别为0.638和0.681,RMSE分别为0.554和0.519;而NDVI和MSR得到的R^(2)分别为0.567和0.560,RMSE分别为0.606和0.611。②基于各VI优选波段组合的LAI估算精度(平均R^(2)为0.574,平均RMSE为0.598)优于默认波段组合(平均R^(2)为0.424,平均RMSE为0.694)。③ANN模型的表现优于ER模型。在基于默认波段、优选波段的LAI估算试验中,ANN模型得到的平均R^(2)比ER模型分别提高40.27%和14.03%;平均RMSE分别降低11.32%和8.11%。④就本项目试验而言,训练样本量对基于ANN模型的LAI估测精度的影响不显著。例如,当训练样本量低至24时,基于EVI构建的ANN模型的测试精度(R^(2)=0.660,RMSE=0.537),仍然优于ER模型(R^(2)=0.597,RMSE=0.585)。【结论】VI及其波段选择与回归建模方法对县域水稻LAI高光谱遥感估算均有明显影响。针对特定区域的目标作物,尝试利用任意可能的波段组合来计算多种VI,遴选与实测LAI相关系数最大的VI及其波段组合,有益于提高基于VI的LAI高光谱遥感估算精度。同时,即使基于小样本训练数据,机器学习算法仍有可能得出优于参数回归的结果。
展开更多
关键词
叶面积指数
遥感反演
植被指数
波段选择
机器学习
样本量
在线阅读
下载PDF
职称材料
题名
基于高光谱植被指数的水稻LAI遥感估算
被引量:
9
1
作者
张敏
郭涛
刘轲
黄平
喻君
刘仕川
刘泳伶
李源洪
机构
四川省
农业
科学院遥感应用研究所/
农业
农村部遥感应用中心成都分中心
凉山彝族自治州昭觉县农业局
出处
《西南农业学报》
CSCD
北大核心
2022年第11期2651-2658,共8页
基金
四川省应用基础研究项目(2017JY0284)
四川省省院省校合作项目(2018JZ0054)
+4 种基金
四川省科技计划项目(2021YFG0028)
成都市重点研发支撑计划项目(2019-YF05-01368-SN)
四川省农业科学院中试熟化与示范转化工程项目(2022ZSSFGH10)
四川省农业科学院青年领军人才研究基金
四川省农业科学院拔尖人才项目(农院函[2020]236号)。
文摘
【目的】探索植被指数(VI)及其波段选择、回归建模方法、训练样本选取三方面因素对基于统计模型的水稻叶面积指数(LAI)高光谱遥感估算的影响,构建县域水稻LAI估算模型,并在四川省凉山彝族自治州昭觉县开展实证应用。【方法】本文基于不同样本量的3套训练数据,分别对增强型植被指数(EVI)、修正三角植被指数2(MTVI2)、归一化差值植被指数(NDVI)和修正比值植被指数(MSR)开展波段选择。在此基础上,以1种VI作为LAI的特征参量,试用指数回归(ER)和人工神经网络(ANN),构建县域水稻LAI估算模型。计算LAI估算值和实测值之间的决定系数(R^(2))和均方根误差(RMSE),开展估算精度验证。【结果】①基于EVI或MTVI2的LAI估算精度优于NDVI和MSR。以ANN模型为例,基于优选波段的EVI和MTVI2得到的R^(2)分别为0.638和0.681,RMSE分别为0.554和0.519;而NDVI和MSR得到的R^(2)分别为0.567和0.560,RMSE分别为0.606和0.611。②基于各VI优选波段组合的LAI估算精度(平均R^(2)为0.574,平均RMSE为0.598)优于默认波段组合(平均R^(2)为0.424,平均RMSE为0.694)。③ANN模型的表现优于ER模型。在基于默认波段、优选波段的LAI估算试验中,ANN模型得到的平均R^(2)比ER模型分别提高40.27%和14.03%;平均RMSE分别降低11.32%和8.11%。④就本项目试验而言,训练样本量对基于ANN模型的LAI估测精度的影响不显著。例如,当训练样本量低至24时,基于EVI构建的ANN模型的测试精度(R^(2)=0.660,RMSE=0.537),仍然优于ER模型(R^(2)=0.597,RMSE=0.585)。【结论】VI及其波段选择与回归建模方法对县域水稻LAI高光谱遥感估算均有明显影响。针对特定区域的目标作物,尝试利用任意可能的波段组合来计算多种VI,遴选与实测LAI相关系数最大的VI及其波段组合,有益于提高基于VI的LAI高光谱遥感估算精度。同时,即使基于小样本训练数据,机器学习算法仍有可能得出优于参数回归的结果。
关键词
叶面积指数
遥感反演
植被指数
波段选择
机器学习
样本量
Keywords
Leaf area index
Remote sensing retrieval
Vegetation indices
Bands selection
Machine learning
Sample size
分类号
Q948.153 [生物学—植物学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于高光谱植被指数的水稻LAI遥感估算
张敏
郭涛
刘轲
黄平
喻君
刘仕川
刘泳伶
李源洪
《西南农业学报》
CSCD
北大核心
2022
9
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部