针对日光温室土地利用率低,单体小不能进行立体栽培果树种植,不利于机械化操作等问题。该文提出一种大跨度主动蓄能型温室,该温室南北走向,双屋面拱形钢骨架结构,并采用主动蓄放热系统进行能量的蓄积与释放。该试验以传统砖墙日光温室...针对日光温室土地利用率低,单体小不能进行立体栽培果树种植,不利于机械化操作等问题。该文提出一种大跨度主动蓄能型温室,该温室南北走向,双屋面拱形钢骨架结构,并采用主动蓄放热系统进行能量的蓄积与释放。该试验以传统砖墙日光温室作为对照,对大跨度主动蓄能型温室室内外温湿度以及主动蓄放热系统的能量收支进行分析,并对比2种温室的建造成本,综合分析了试验温室保温节能效果及经济效益。结果表明:大跨度主动蓄能型温室土地利用率高达87.4%。温室夜间平均气温高于10℃,无极端低温,晴天夜间平均气温比对照温室高1.5~3.1℃,比室外高13.9~19.3℃;阴天夜间平均气温比对照温室高1.2~2.8℃,比室外高12.5~18.9℃。夜间室内相对湿度平均比对照温室低7%~10%。主动蓄放热系统性能系数COP(coefficient of performance)为3.4~4.2,平均每天能耗0.013 k Wh/m2,与传统燃煤锅炉加温系统相比,平均节能率为47%。大跨度主动蓄能型温室建造成本每平米307.2元,比传统砖墙日光温室低144.5元。大跨度主动蓄能型温室是一种土地利用率高,单体大,保温性能良好,能进行冬季果菜生产的新型温室类型,且投入少,综合其经济环境效益,值得推广应用。展开更多
主动蓄放热-热泵联合加温系统加温和节能效果显著,在温室加温领域应用前景广阔,但系统技术参数及工艺仍有待优化。该文通过对系统进行能量平衡和可用能(Exergy)分析,得出系统及各组件的性能系数、可用能损失、损失比和可用能效率...主动蓄放热-热泵联合加温系统加温和节能效果显著,在温室加温领域应用前景广阔,但系统技术参数及工艺仍有待优化。该文通过对系统进行能量平衡和可用能(Exergy)分析,得出系统及各组件的性能系数、可用能损失、损失比和可用能效率,以此为依据对系统进行性能评价和优化。试验结果表明:系统平均1d中集热和保温阶段可用能损失总量为9.77×104 kJ,可用能效率为48.7%;可用能损失最大、可用能效率最低的组件是主动蓄放热装置,其次是热泵装置、循环水泵和蓄热水箱,其可用能损失比分别为78.7%、8.3%、7.7%、5.3%,可用能效率分别为25.6%、38.3%、75.0%、88.2%。就整个系统而言,最需要进行技术优化的是主动蓄放热装置与热泵装置,可用能损失主要由有限温差传热引起,降低传热温差、减少有限温差传热过程以及改进生产工艺是优化的重点。试验期间系统的集热效率为89.0%~100.5%,热泵装置制热性能系数(coefficient of performance,COPHp)达5.48~6.08,性能远远高于传统太阳能热水系统以及水、地源热泵。该研究为温室加温系统性能评价和优化设计提供思路。展开更多
由于日光温室的蓄热能力有限,后半夜温度往往比较低,难以满足作物生长需求。针对这一问题,该文提出了基于热泵的日光温室浅层土壤水媒蓄放热方法,其原理是白天开启循环水泵,将后墙获得的太阳辐射储存到温室浅层土壤中;前半夜通过浅层土...由于日光温室的蓄热能力有限,后半夜温度往往比较低,难以满足作物生长需求。针对这一问题,该文提出了基于热泵的日光温室浅层土壤水媒蓄放热方法,其原理是白天开启循环水泵,将后墙获得的太阳辐射储存到温室浅层土壤中;前半夜通过浅层土壤热量的自然释放加热温室;当温室温度较低时,启动热泵系统将浅层土壤中的热量提升后加热温室。试验结果表明,在阴天系统系数(coefficient of performance,COP)能达到3以上,与燃煤热水锅炉相比节能33%;与对照温室相比,盖上保温被后,由于试验温室蓄热量大于对照温室,试验温室空气温度和土壤温度分别比对照温室平均高3.2和3.3℃;开启热泵机组后,试验温室空气温度和土壤温度分别比对照温室平均高5.7和2.9℃。展开更多
文摘针对日光温室土地利用率低,单体小不能进行立体栽培果树种植,不利于机械化操作等问题。该文提出一种大跨度主动蓄能型温室,该温室南北走向,双屋面拱形钢骨架结构,并采用主动蓄放热系统进行能量的蓄积与释放。该试验以传统砖墙日光温室作为对照,对大跨度主动蓄能型温室室内外温湿度以及主动蓄放热系统的能量收支进行分析,并对比2种温室的建造成本,综合分析了试验温室保温节能效果及经济效益。结果表明:大跨度主动蓄能型温室土地利用率高达87.4%。温室夜间平均气温高于10℃,无极端低温,晴天夜间平均气温比对照温室高1.5~3.1℃,比室外高13.9~19.3℃;阴天夜间平均气温比对照温室高1.2~2.8℃,比室外高12.5~18.9℃。夜间室内相对湿度平均比对照温室低7%~10%。主动蓄放热系统性能系数COP(coefficient of performance)为3.4~4.2,平均每天能耗0.013 k Wh/m2,与传统燃煤锅炉加温系统相比,平均节能率为47%。大跨度主动蓄能型温室建造成本每平米307.2元,比传统砖墙日光温室低144.5元。大跨度主动蓄能型温室是一种土地利用率高,单体大,保温性能良好,能进行冬季果菜生产的新型温室类型,且投入少,综合其经济环境效益,值得推广应用。
文摘利用箱式堆肥法对死猪堆肥处理通风率参数进行优化,试验设置通风速率为100、80、60 L·min-1·m-33组处理,每组处理3个重复。堆肥箱的长宽高尺寸均为1 m,每个箱体处理死猪质量为57.7~58.5 kg,发酵原料为猪粪和秸秆。结果表明:各处理日平均温度超过55℃的时间均达35 d 以上,满足粪便无害化的相关要求;经46 d 的堆肥发酵后,死猪仅剩余部分骨骼,3组处理的死猪降解率(湿重)分别为(95.6±1.1)豫、(94.6±2.2)豫和(96.2±1.5)豫,不同处理无显著性差异;堆肥过程不同处理的物料同一特性变化规律一致,堆肥结束时物料中粪大肠菌群数为3 MPN·g-1、pH 值为8.3~8.4、有机质含量(干基)为45.5豫~51.1豫,均满足 NY 525-2012《有机肥料》行业标准中相关技术指标的要求。死猪堆肥处理的实际应用中,选择60 L·min-1·m-3的通风率为宜。
文摘主动蓄放热-热泵联合加温系统加温和节能效果显著,在温室加温领域应用前景广阔,但系统技术参数及工艺仍有待优化。该文通过对系统进行能量平衡和可用能(Exergy)分析,得出系统及各组件的性能系数、可用能损失、损失比和可用能效率,以此为依据对系统进行性能评价和优化。试验结果表明:系统平均1d中集热和保温阶段可用能损失总量为9.77×104 kJ,可用能效率为48.7%;可用能损失最大、可用能效率最低的组件是主动蓄放热装置,其次是热泵装置、循环水泵和蓄热水箱,其可用能损失比分别为78.7%、8.3%、7.7%、5.3%,可用能效率分别为25.6%、38.3%、75.0%、88.2%。就整个系统而言,最需要进行技术优化的是主动蓄放热装置与热泵装置,可用能损失主要由有限温差传热引起,降低传热温差、减少有限温差传热过程以及改进生产工艺是优化的重点。试验期间系统的集热效率为89.0%~100.5%,热泵装置制热性能系数(coefficient of performance,COPHp)达5.48~6.08,性能远远高于传统太阳能热水系统以及水、地源热泵。该研究为温室加温系统性能评价和优化设计提供思路。
文摘由于日光温室的蓄热能力有限,后半夜温度往往比较低,难以满足作物生长需求。针对这一问题,该文提出了基于热泵的日光温室浅层土壤水媒蓄放热方法,其原理是白天开启循环水泵,将后墙获得的太阳辐射储存到温室浅层土壤中;前半夜通过浅层土壤热量的自然释放加热温室;当温室温度较低时,启动热泵系统将浅层土壤中的热量提升后加热温室。试验结果表明,在阴天系统系数(coefficient of performance,COP)能达到3以上,与燃煤热水锅炉相比节能33%;与对照温室相比,盖上保温被后,由于试验温室蓄热量大于对照温室,试验温室空气温度和土壤温度分别比对照温室平均高3.2和3.3℃;开启热泵机组后,试验温室空气温度和土壤温度分别比对照温室平均高5.7和2.9℃。