期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于机器学习方法预测母猪产仔数性状 被引量:5
1
作者 李信颉 王海燕 +4 位作者 蒋贝加 王超 赵志超 李长春 刘向东 《华中农业大学学报》 CAS CSCD 北大核心 2020年第4期63-68,共6页
为指导养猪生产者更好地预测母猪的产仔数性状,尽早淘汰繁殖力较差的母猪,提升母猪群体的繁殖潜力,对记录了母猪总产仔数、产活仔数、健仔数、5日龄仔猪数和1 kg以上仔猪数的生产数据进行处理和描述统计,使用R软件中的Boruta包筛选出影... 为指导养猪生产者更好地预测母猪的产仔数性状,尽早淘汰繁殖力较差的母猪,提升母猪群体的繁殖潜力,对记录了母猪总产仔数、产活仔数、健仔数、5日龄仔猪数和1 kg以上仔猪数的生产数据进行处理和描述统计,使用R软件中的Boruta包筛选出影响母猪产仔数性状的重要特征如品种、胎次、配种季节等,利用传统回归分析方法(LR)和不同机器学习方法—决策树(decision tree,DT)、K近邻(K-nearest neighbor,KNN)、支持向量机(support vector machine,SVM)对产仔数性状进行回归分析,最后比较机器学习方法与传统回归方法建模的优劣。结果显示,母猪总产仔数、产活仔数、健仔数、5日龄仔猪数和1 kg以上仔猪数不同回归分析方法的R^2均达到0.71以上(0.71~0.88),体现了特征选择的正确性;在预测母猪总产仔数、产活仔数、健仔数、5日龄仔猪数和1 kg以上仔猪数中SVM模型均显著优于其他机器学习模型(P<0.05)并且要优于传统回归方法,而且在以上模型中预测1 kg以上仔猪数的SVM模型最优。因此,在今后的养猪生产中机器学习方法可能会成为养猪生产者早期选育高繁殖力母猪的一种新途径。 展开更多
关键词 机器学习模型 决策树 K近邻 支持向量机 母猪 产仔数性状
在线阅读 下载PDF
基于机器学习方法的母猪高低产分类模型研究 被引量:2
2
作者 李喜阳 李信颉 +2 位作者 赵志超 李长春 刘向东 《华中农业大学学报》 CAS CSCD 北大核心 2021年第3期221-229,共9页
为帮助猪场管理者更好地对母猪进行繁殖管理、预测母猪的高低产、及时淘汰低产母猪,收集和整理包含出生场地、分娩栏位、品种和不同胎次、初生窝重信息的3个母猪群体的生产数据集,制定母猪高低产的分类标准,使用R软件中的Boruta包筛选... 为帮助猪场管理者更好地对母猪进行繁殖管理、预测母猪的高低产、及时淘汰低产母猪,收集和整理包含出生场地、分娩栏位、品种和不同胎次、初生窝重信息的3个母猪群体的生产数据集,制定母猪高低产的分类标准,使用R软件中的Boruta包筛选出影响母猪高低产的重要特征,使用4种不同的机器学习方法——逻辑回归(logistic regression,LOG)、决策树(decision tree,DT)、随机森林(random forest,RF)和支持向量机(support vector machine,SVM)构建母猪高低产的分类模型,并进行决策树视图分析探究影响母猪最高产的相关因素。结果显示:4种机器学习方法构建母猪高产分类模型的分类准确率均在71%左右,最高可达84%,并且发现SVM作为最佳建模方法在所有数据集和不同分类标准下出现的频率最高,其次是LOG和DT。决策树视图显示出生场地、品种和初生窝重是划分最高产母猪的重要叶节点,利用这些特征预测最高产母猪准确率可达73%~82%。以上结果表明在未来的养猪生产中,利用机器学习方法实现母猪高低产的早期预测将会是一个不错的选择。 展开更多
关键词 机器学习方法 精准养猪 母猪早期选育 决策树 随机森林 支持向量机 繁殖性能 产仔数早期预测 高繁殖力 分类模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部