针对农业领域文本信息密度大、语义模糊、特征稀疏的特点,提出一种基于MacBERT(MLM as correction-BERT)、深度金字塔卷积网络(DPCNN)和注意力机制(Attention)的农业文本分类模型,命名为MacBERT—DPCNN—Attention(MDA)。首先,使用MacB...针对农业领域文本信息密度大、语义模糊、特征稀疏的特点,提出一种基于MacBERT(MLM as correction-BERT)、深度金字塔卷积网络(DPCNN)和注意力机制(Attention)的农业文本分类模型,命名为MacBERT—DPCNN—Attention(MDA)。首先,使用MacBERT模型充分提取农业类文本内容的上下文信息,强化文本的语义特征表示。然后,DPCNN模型通过其多层卷积神经网络和池化操作,有效捕获文本的局部特征。最后,注意力机制进一步增强农业文本序列的特征表达。结果表明,与其他主流模型如BERT—DPCNN、BERT—CNN、BERT—RNN相比,MDA模型在农业文本分类任务上的精确率提升1.04%以上,召回率提升0.95%以上,F1值提升0.14%以上。表明所提模型在解决农业领域文本分类问题方面的有效性和优越性。展开更多
[目的/意义]农业场景下的知识服务具有周期性长、活动时间长的特点。传统推荐模型无法有效挖掘农业场景下的基于农时的隐藏信息。针对上述问题,提出一种融合时间感知和增强过滤的农业知识个性化推荐模型(Time-aware and Filter-enhanced...[目的/意义]农业场景下的知识服务具有周期性长、活动时间长的特点。传统推荐模型无法有效挖掘农业场景下的基于农时的隐藏信息。针对上述问题,提出一种融合时间感知和增强过滤的农业知识个性化推荐模型(Time-aware and Filter-enhanced Sequential Recommendation Model for Agriculture Knowledge,TiFSA)。[方法]首先,基于时间感知的位置嵌入方法,将农户交互的时间信息与位置嵌入相结合,帮助学习农业情境下基于农时的项目相关性。其次,在时间感知位置嵌入的基础上,引入滤波器过滤算法,自适应地衰减农户情境数据中的噪声。最后,引入时间信息的多头自注意力网络,实现对时间、项目和特征的统一建模,对农户随时间变化的偏好特征进行情境表示,从而为用户提供可靠的推荐结果。[结果和讨论]根据“全国农业知识智能服务云平台”中的用户交互序列数据集进行实验。结果表明,该模型在农业数据集上的命中率为45.79%,归一化折损累计增益为53.52%;与近几年性能最佳的模型Ti-SASRec相比分别提升16.19%和14.02%。[结论]该模型能够有效捕获农业领域的用户情境特征和建模农户的动态偏好,具有更好的推荐性能。展开更多
针对复杂语境下的蔬菜种植领域命名实体识别任务中存在实体分布不均衡、实体边界不清晰和语义关联不足等问题,提出一种基于对抗训练和多头自注意力机制的蔬菜种植领域命名实体识别模型。以番茄为研究对象,采用ALBERT(a lite BERT)提取...针对复杂语境下的蔬菜种植领域命名实体识别任务中存在实体分布不均衡、实体边界不清晰和语义关联不足等问题,提出一种基于对抗训练和多头自注意力机制的蔬菜种植领域命名实体识别模型。以番茄为研究对象,采用ALBERT(a lite BERT)提取语料动态词向量,结合对抗训练对词向量扰动生成对抗样本并集成为嵌入层输出,缓解农业数据不平衡问题;在特征提取层中通过引入多头自注意力机制对BiLSTM提取的序列特征进一步优化权重分布,更多关注边界信息,加强文本语义关联;最后采用条件随机场解码标注序列。在由8个类别和5542条标注样本构建的语料库Veg-Tomato上进行了实验。结果表明,该模型的精确率、召回率和F1值分别达89.26%、85.77%、87.48%,较最优基线模型提高了0.69、3.56、2.21个百分点,在小样本数据上仍能表现较高的识别精度,适用于蔬菜种植领域命名实体识别任务。展开更多
[目的/意义]借助智能化识别及图像处理等技术来实现对移栽后蔬菜状态的识别和分析,将会极大提高识别效率。为了实现甘蓝大田移栽情况的实时监测和统计,提高甘蓝移栽后的成活率以及制定后续工作方案,减少人力和物力的浪费,研究一种自然...[目的/意义]借助智能化识别及图像处理等技术来实现对移栽后蔬菜状态的识别和分析,将会极大提高识别效率。为了实现甘蓝大田移栽情况的实时监测和统计,提高甘蓝移栽后的成活率以及制定后续工作方案,减少人力和物力的浪费,研究一种自然环境下高效识别甘蓝移栽状态的算法。[方法]采集移栽后的甘蓝图像,利用数据增强方式对数据进行处理,输入YOLOv8s(You Only Look Once Version 8s)算法中进行识别,通过结合可变形卷积,提高算法特征提取和目标定位能力,捕获更多有用的目标信息,提高对目标的识别效果;通过嵌入多尺度注意力机制,降低背景因素干扰,增加算法对目标区域的关注,提高模型对不同尺寸的甘蓝的检测能力,降低漏检率;通过引入Focal-EIoU Loss(Focal Extended Intersection over Union Loss),优化算法定位精度,提高算法的收敛速度和定位精度。[结果和讨论]提出的算法经过测试,对甘蓝移栽状态的召回率R值和平均精度均值(Mean Average Precision,mAP)分别达到92.2%和96.2%,传输速率为146帧/s,可满足实际甘蓝移栽工作对移栽状态识别精度和速度的要求。[结论]提出的甘蓝移栽状态检测方法能够实现对甘蓝移栽状态识别的准确识别,可以提升移栽质量测量效率,减少时间和人力投入,提高大田移栽质量调查的自动化程度。展开更多
文摘针对农业领域文本信息密度大、语义模糊、特征稀疏的特点,提出一种基于MacBERT(MLM as correction-BERT)、深度金字塔卷积网络(DPCNN)和注意力机制(Attention)的农业文本分类模型,命名为MacBERT—DPCNN—Attention(MDA)。首先,使用MacBERT模型充分提取农业类文本内容的上下文信息,强化文本的语义特征表示。然后,DPCNN模型通过其多层卷积神经网络和池化操作,有效捕获文本的局部特征。最后,注意力机制进一步增强农业文本序列的特征表达。结果表明,与其他主流模型如BERT—DPCNN、BERT—CNN、BERT—RNN相比,MDA模型在农业文本分类任务上的精确率提升1.04%以上,召回率提升0.95%以上,F1值提升0.14%以上。表明所提模型在解决农业领域文本分类问题方面的有效性和优越性。
文摘[目的/意义]农业场景下的知识服务具有周期性长、活动时间长的特点。传统推荐模型无法有效挖掘农业场景下的基于农时的隐藏信息。针对上述问题,提出一种融合时间感知和增强过滤的农业知识个性化推荐模型(Time-aware and Filter-enhanced Sequential Recommendation Model for Agriculture Knowledge,TiFSA)。[方法]首先,基于时间感知的位置嵌入方法,将农户交互的时间信息与位置嵌入相结合,帮助学习农业情境下基于农时的项目相关性。其次,在时间感知位置嵌入的基础上,引入滤波器过滤算法,自适应地衰减农户情境数据中的噪声。最后,引入时间信息的多头自注意力网络,实现对时间、项目和特征的统一建模,对农户随时间变化的偏好特征进行情境表示,从而为用户提供可靠的推荐结果。[结果和讨论]根据“全国农业知识智能服务云平台”中的用户交互序列数据集进行实验。结果表明,该模型在农业数据集上的命中率为45.79%,归一化折损累计增益为53.52%;与近几年性能最佳的模型Ti-SASRec相比分别提升16.19%和14.02%。[结论]该模型能够有效捕获农业领域的用户情境特征和建模农户的动态偏好,具有更好的推荐性能。
文摘针对复杂语境下的蔬菜种植领域命名实体识别任务中存在实体分布不均衡、实体边界不清晰和语义关联不足等问题,提出一种基于对抗训练和多头自注意力机制的蔬菜种植领域命名实体识别模型。以番茄为研究对象,采用ALBERT(a lite BERT)提取语料动态词向量,结合对抗训练对词向量扰动生成对抗样本并集成为嵌入层输出,缓解农业数据不平衡问题;在特征提取层中通过引入多头自注意力机制对BiLSTM提取的序列特征进一步优化权重分布,更多关注边界信息,加强文本语义关联;最后采用条件随机场解码标注序列。在由8个类别和5542条标注样本构建的语料库Veg-Tomato上进行了实验。结果表明,该模型的精确率、召回率和F1值分别达89.26%、85.77%、87.48%,较最优基线模型提高了0.69、3.56、2.21个百分点,在小样本数据上仍能表现较高的识别精度,适用于蔬菜种植领域命名实体识别任务。
文摘[目的/意义]借助智能化识别及图像处理等技术来实现对移栽后蔬菜状态的识别和分析,将会极大提高识别效率。为了实现甘蓝大田移栽情况的实时监测和统计,提高甘蓝移栽后的成活率以及制定后续工作方案,减少人力和物力的浪费,研究一种自然环境下高效识别甘蓝移栽状态的算法。[方法]采集移栽后的甘蓝图像,利用数据增强方式对数据进行处理,输入YOLOv8s(You Only Look Once Version 8s)算法中进行识别,通过结合可变形卷积,提高算法特征提取和目标定位能力,捕获更多有用的目标信息,提高对目标的识别效果;通过嵌入多尺度注意力机制,降低背景因素干扰,增加算法对目标区域的关注,提高模型对不同尺寸的甘蓝的检测能力,降低漏检率;通过引入Focal-EIoU Loss(Focal Extended Intersection over Union Loss),优化算法定位精度,提高算法的收敛速度和定位精度。[结果和讨论]提出的算法经过测试,对甘蓝移栽状态的召回率R值和平均精度均值(Mean Average Precision,mAP)分别达到92.2%和96.2%,传输速率为146帧/s,可满足实际甘蓝移栽工作对移栽状态识别精度和速度的要求。[结论]提出的甘蓝移栽状态检测方法能够实现对甘蓝移栽状态识别的准确识别,可以提升移栽质量测量效率,减少时间和人力投入,提高大田移栽质量调查的自动化程度。