农业机械轨迹作业行为模式识别是一项多变量时间序列分类任务,旨在利用轨迹数据的时空特征识别农机的行为模式。针对已有方法未能从频率角度挖掘农机轨迹的全局特性以及识别精度不足的问题,提出了一种面向农机轨迹行为模式识别的频域注...农业机械轨迹作业行为模式识别是一项多变量时间序列分类任务,旨在利用轨迹数据的时空特征识别农机的行为模式。针对已有方法未能从频率角度挖掘农机轨迹的全局特性以及识别精度不足的问题,提出了一种面向农机轨迹行为模式识别的频域注意力和U型残差网络FARNet。该网络包含两个不同网络分支,用于全面挖掘农机轨迹的依赖信息。其中一个分支搭载了基于频域注意力的Transformer(transformer based on frequency attention,FAT)来挖掘农机轨迹在频域空间的全局时序依赖;另一分支部署了基于正交约束的U型残差网络(U-shaped residual network based on orthogonal constraints,URNet),其以ResUnet作为骨干网络提取轨迹特征图在不同感受野的深层语义信息,探索轨迹特征间的局部空间依赖。最后设计了一种特征对齐学习模块(feature alignment learning module,FA)来融合并对齐两个分支的输出特征,全面调节农机轨迹在全局和局部不同范围下的上下文信息,提高算法的识别性能。为验证所提方法的有效性,在真实轨迹数据集上进行了实验,结果表明,所提方法相比现有的SOTA模型在水稻和小麦收割机轨迹数据集上的F1-score提高了13.94和11.47个百分点。展开更多
针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimensi...针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimension Exchange,APE-DE)。首先,设计了一种自扰动补偿策略,通过个体的空间位置来引导其搜索方向,有效避免了算法易陷入局部最优的困境。然后,提出了一种极性维度交互策略,用于提升算法多样性,一旦种群被检测出停滞,将启动相应的增强方案。最后,提出了一种自适应参数控制策略,通过小波基函数和适应度分布偏差信息实时捕捉种群适应度的变化,并据此动态调整算法参数。为了验证APE-DE的性能,在被广泛使用的IEEE CEC2017数据集上进行了实验,以验证算法面对多模态及复杂测试环境下的性能。实验结果表明,与8种最先进的差分进化变体相比,APE-DE在收敛精度和收敛速度方面均展现出了显著的优势。此外,为了评估APE-DE在解决现实问题中的有效性,将所提算法应用于光伏模型的参数识别问题。展开更多
文摘农业机械轨迹作业行为模式识别是一项多变量时间序列分类任务,旨在利用轨迹数据的时空特征识别农机的行为模式。针对已有方法未能从频率角度挖掘农机轨迹的全局特性以及识别精度不足的问题,提出了一种面向农机轨迹行为模式识别的频域注意力和U型残差网络FARNet。该网络包含两个不同网络分支,用于全面挖掘农机轨迹的依赖信息。其中一个分支搭载了基于频域注意力的Transformer(transformer based on frequency attention,FAT)来挖掘农机轨迹在频域空间的全局时序依赖;另一分支部署了基于正交约束的U型残差网络(U-shaped residual network based on orthogonal constraints,URNet),其以ResUnet作为骨干网络提取轨迹特征图在不同感受野的深层语义信息,探索轨迹特征间的局部空间依赖。最后设计了一种特征对齐学习模块(feature alignment learning module,FA)来融合并对齐两个分支的输出特征,全面调节农机轨迹在全局和局部不同范围下的上下文信息,提高算法的识别性能。为验证所提方法的有效性,在真实轨迹数据集上进行了实验,结果表明,所提方法相比现有的SOTA模型在水稻和小麦收割机轨迹数据集上的F1-score提高了13.94和11.47个百分点。
文摘针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimension Exchange,APE-DE)。首先,设计了一种自扰动补偿策略,通过个体的空间位置来引导其搜索方向,有效避免了算法易陷入局部最优的困境。然后,提出了一种极性维度交互策略,用于提升算法多样性,一旦种群被检测出停滞,将启动相应的增强方案。最后,提出了一种自适应参数控制策略,通过小波基函数和适应度分布偏差信息实时捕捉种群适应度的变化,并据此动态调整算法参数。为了验证APE-DE的性能,在被广泛使用的IEEE CEC2017数据集上进行了实验,以验证算法面对多模态及复杂测试环境下的性能。实验结果表明,与8种最先进的差分进化变体相比,APE-DE在收敛精度和收敛速度方面均展现出了显著的优势。此外,为了评估APE-DE在解决现实问题中的有效性,将所提算法应用于光伏模型的参数识别问题。