生鲜农产品易发生品质劣变,其中氨气是反映其品质变化的重要检测指标。针对传统有芯片氨气传感器电路设计复杂、寿命有限问题,设计了一种无芯片射频识别(Radio frequency identification,RFID)氨气传感器,用于生鲜农产品挥发性氨气检测...生鲜农产品易发生品质劣变,其中氨气是反映其品质变化的重要检测指标。针对传统有芯片氨气传感器电路设计复杂、寿命有限问题,设计了一种无芯片射频识别(Radio frequency identification,RFID)氨气传感器,用于生鲜农产品挥发性氨气检测。首先,基于高频电磁仿真软件(High frequency structure simulator,HFSS)设计了微带贴片天线结构,研究了传感器天线的电磁场分布、回波损耗S11和极化特性,通过在微带天线上加载金属短路和寄生单元优化了传感器结构;采用激光雕刻技术制备传感器标签,并选择了在室温下对氨气具有良好选择性的ZnO/TiO_(2)纳米复合材料,将其喷涂在微带天线表面辐射单元上;其次,结合氨气射频检测原理,搭建了基于无芯片RFID的生鲜农产品挥发性氨气测试系统,分析了传感器的交叉敏感性和低温高湿环境下的稳定性,最后,对实际测试结果进行了主成分分析和Pearson相关分析。试验结果表明,该无芯片RFID传感器中心谐振频率为2.25 GHz,加载金属短路后增益提升0.13 dB,在实验室氨气质量浓度0~100 mg/L环境下灵敏度达到0.11 dB·L/mg,实际测试过程中,鸡肉氨气传感响应值较高,为9.0 dB;虾肉氨传感响应值较低,为4.5 dB。此外,传感器检测响应能有效区分干扰气体(H_(2)S、CO_(2)、CH_(4)、C2H5OH),相关系数绝对均值均小于0.5;在低温高湿环境下,传感器能够有效完成氨气检测,且稳定性良好。展开更多
随着传统农业逐渐向智慧农业转型,室温条件下具有低成本、长寿命、低功耗、小型化的检测手段对于农业环境及动植物本体指标检测至关重要,尤其对于无法进行电路有线连接的农业场景。随着器件传感和无线通信的整合,无芯片射频识别(chiples...随着传统农业逐渐向智慧农业转型,室温条件下具有低成本、长寿命、低功耗、小型化的检测手段对于农业环境及动植物本体指标检测至关重要,尤其对于无法进行电路有线连接的农业场景。随着器件传感和无线通信的整合,无芯片射频识别(chipless radio frequency identification,CRFID)因为具有轻量、价格合理、普适性等优势被广泛应用,CRFID标签具有理论上的“无限”寿命,代替了集成电路,成为标识传感信息融合的重要媒介,适用于农业环境、动植物生长监测、物流运输、食品品质检测等。该研究首先介绍了CRFID系统构成,以及其基本原理,指出天线是CRFID实现跨域感知的关键要素之一,随着农业场景中气体、环境温湿度、pH值等变化,天线负载敏感材料的电导率、磁导率、介电常数变化,引起CRFID标签的反向散射信号变化;其次,基于时频域标签,介绍了CRFID用于湿度、温度、气体(二氧化碳、氨气、乙烯)、pH和食品(猪肉、牛肉、鱼肉、果蔬、牛奶)检测的国内外最新研究进展,对比了相关传感器的关键性能指标;最后,针对CRFID技术的成功案例,指出了该类型传感器面临的主要研究挑战、未来研究方向和潜在解决方案,指出了未来智慧农业检测场景的低功耗、小型化、抗干扰发展趋势。CRFID技术的成功应用将有利于提升农业场景传感检测的智慧化程度,有助于人类及动植物生产活动健康评估。展开更多
射频识别(radio frequency identification,RFID)技术为工业物联网(industrial internet of things)带来了巨大的进步,作为实现智能仓储的关键技术之一,广泛应用于库存管理和智能定位等场景,然而现有的绝对/相对定位方法易受仓储环境、...射频识别(radio frequency identification,RFID)技术为工业物联网(industrial internet of things)带来了巨大的进步,作为实现智能仓储的关键技术之一,广泛应用于库存管理和智能定位等场景,然而现有的绝对/相对定位方法易受仓储环境、包装材料、货架材质等因素影响。为了进一步提升室内定位精度,该研究提出了一种基于接收信号强度指示器(receive signal strength indicator,RSSI)和测量相位融合的无源RFID定位方法(RFID positioning based on received signal strength indicator and phase measurement,RP-RaP)。首先,使用MATLAB软件进行仿真模拟,在已知测量相位统计学分布的前提下,采用最大似然估计法对标签进行水平定位,同时基于双天线阅读器所测得的RSSI差值对标签进行垂直定位,实现了无源超高频RFID标签的水平和垂直定位仿真。其次,以农产品包装场景为例,在仓库中搭建射频定位测试系统,通过滑轨搭载射频阅读器及天线,对货架物品上的贴附标签进行水平和垂直定位分析,最后将无源标签分别贴附于金属盒、油桶、纸箱、面粉袋和大米袋,并以未贴附标签的测量结果作为对比。试验结果表明,与传统的室内定位算法LANDMARC相比,RP-RaP定位精度明显提升,平均水平和垂直定位精度分别达到94.6%和94.3%,基于接收信号强度指示器和测量相位融合的定位方法有效提升了农产品包装定位精度。研究结果可为大型农产品仓储智能化管理与应用提供参考。展开更多
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ...This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.展开更多
氨气是畜禽场景中的主要有害气体之一,针对有源传感器不适于电路有线连接受限的畜禽场景问题,该研究基于高频电磁仿真软件(high frequency structure simulator,HFSS)设计了无源传感器仿真模型,选择聚酰亚胺(polyimide,PI)作为基板材料...氨气是畜禽场景中的主要有害气体之一,针对有源传感器不适于电路有线连接受限的畜禽场景问题,该研究基于高频电磁仿真软件(high frequency structure simulator,HFSS)设计了无源传感器仿真模型,选择聚酰亚胺(polyimide,PI)作为基板材料,采用丝网印刷技术研制了基于射频识别(radio frequency identification,RFID)原理的无源氨气传感标签。通过对氨气无源检测原理的解析,选择了具有高表面积的碳纳米管作为氨气敏感材料,推导了通过测量射频接收功率变化实现无源检测的数学模型;考虑谐振频率的动态调整,无源RFID传感标签采用开口间隙可调的裂环谐振器结构,通过分析传输系数的变化对RFID传感标签的检测过程进行模拟;搭建了用于实验室和畜禽场景氨气检测的射频测试系统,围绕功率反射系数、谐振频率、传输系数开展测试分析。试验结果表明,该标签检测效率易受到到二氧化碳、温湿度因素的影响,由于人工切割、基板变形、环境干扰等因素,实物标签的谐振频率与2.4 GHz的仿真谐振频率之间存在0.05 GHz左右的偏差,传感标签的灵敏度约为15 MHz·L/mg,最大阅读距离为24 cm,相比于商用氨气传感器,该传感标签在使用寿命、响应时间方面有明显优势。研究结果为畜禽场景的氨气无源检测提供了有效的理论和实践依据。展开更多
毛桃等果实的准确检测是实现机械化、智能化农艺管理的必要前提。然而,由于光照不均和严重遮挡,在果园中实现毛桃,尤其是套袋毛桃的检测一直面临着挑战。本研究基于改进YOLOv5s和多模态视觉数据提出了面向机械化采摘的毛桃多分类准确检...毛桃等果实的准确检测是实现机械化、智能化农艺管理的必要前提。然而,由于光照不均和严重遮挡,在果园中实现毛桃,尤其是套袋毛桃的检测一直面临着挑战。本研究基于改进YOLOv5s和多模态视觉数据提出了面向机械化采摘的毛桃多分类准确检测。具体地,构建了一个多类标签的裸桃和套袋毛桃的RGB-D数据集,包括4127组由消费级RGB-D相机获取的像素对齐的彩色、深度和红外图像。随后,通过引入方向感知和位置敏感的注意力机制,提出了改进的轻量级YOLOv5s(小深度)模型,该模型可以沿一个空间方向捕捉长距离依赖,并沿另一个空间方向保留准确的位置信息,提高毛桃检测精度。同时,通过将卷积操作分解为深度方向的卷积与宽度、高度方向的卷积,使用深度可分离卷积在保持模型检测准确性的同时减少模型的计算量、训练和推理时间。实验结果表明,使用多模态视觉数据的改进YOLOv5s模型在复杂光照和严重遮挡环境下,对裸桃和套袋毛桃的平均精度(Mean Average Precision,mAP)分别为98.6%和88.9%,比仅使用RGB图像提高了5.3%和16.5%,比YOLOv5s提高了2.8%和6.2%。在套袋毛桃检测方面,改进YOLOv5s的mAP比YOLOX-Nano、PP-YOLO-Tiny和EfficientDet-D0分别提升了16.3%、8.1%和4.5%。此外,多模态图像、改进YOLOv5s对提升自然果园中的裸桃和套袋毛桃的准确检测均有贡献,所提出的改进YOLOv5s模型在检测公开数据集中的富士苹果和猕猴桃时,也获得了优于传统方法的结果,验证了所提出的模型具有良好的泛化能力。最后,在主流移动式硬件平台上,改进后的YOLOv5s模型使用五通道多模态图像时检测速度可达每秒19幅,能够实现毛桃的实时检测。上述结果证明了改进的YOLOv5s网络和含多类标签的多模态视觉数据在实现果实自动采摘系统视觉智能方面的应用潜力。展开更多
文摘随着传统农业逐渐向智慧农业转型,室温条件下具有低成本、长寿命、低功耗、小型化的检测手段对于农业环境及动植物本体指标检测至关重要,尤其对于无法进行电路有线连接的农业场景。随着器件传感和无线通信的整合,无芯片射频识别(chipless radio frequency identification,CRFID)因为具有轻量、价格合理、普适性等优势被广泛应用,CRFID标签具有理论上的“无限”寿命,代替了集成电路,成为标识传感信息融合的重要媒介,适用于农业环境、动植物生长监测、物流运输、食品品质检测等。该研究首先介绍了CRFID系统构成,以及其基本原理,指出天线是CRFID实现跨域感知的关键要素之一,随着农业场景中气体、环境温湿度、pH值等变化,天线负载敏感材料的电导率、磁导率、介电常数变化,引起CRFID标签的反向散射信号变化;其次,基于时频域标签,介绍了CRFID用于湿度、温度、气体(二氧化碳、氨气、乙烯)、pH和食品(猪肉、牛肉、鱼肉、果蔬、牛奶)检测的国内外最新研究进展,对比了相关传感器的关键性能指标;最后,针对CRFID技术的成功案例,指出了该类型传感器面临的主要研究挑战、未来研究方向和潜在解决方案,指出了未来智慧农业检测场景的低功耗、小型化、抗干扰发展趋势。CRFID技术的成功应用将有利于提升农业场景传感检测的智慧化程度,有助于人类及动植物生产活动健康评估。
文摘射频识别(radio frequency identification,RFID)技术为工业物联网(industrial internet of things)带来了巨大的进步,作为实现智能仓储的关键技术之一,广泛应用于库存管理和智能定位等场景,然而现有的绝对/相对定位方法易受仓储环境、包装材料、货架材质等因素影响。为了进一步提升室内定位精度,该研究提出了一种基于接收信号强度指示器(receive signal strength indicator,RSSI)和测量相位融合的无源RFID定位方法(RFID positioning based on received signal strength indicator and phase measurement,RP-RaP)。首先,使用MATLAB软件进行仿真模拟,在已知测量相位统计学分布的前提下,采用最大似然估计法对标签进行水平定位,同时基于双天线阅读器所测得的RSSI差值对标签进行垂直定位,实现了无源超高频RFID标签的水平和垂直定位仿真。其次,以农产品包装场景为例,在仓库中搭建射频定位测试系统,通过滑轨搭载射频阅读器及天线,对货架物品上的贴附标签进行水平和垂直定位分析,最后将无源标签分别贴附于金属盒、油桶、纸箱、面粉袋和大米袋,并以未贴附标签的测量结果作为对比。试验结果表明,与传统的室内定位算法LANDMARC相比,RP-RaP定位精度明显提升,平均水平和垂直定位精度分别达到94.6%和94.3%,基于接收信号强度指示器和测量相位融合的定位方法有效提升了农产品包装定位精度。研究结果可为大型农产品仓储智能化管理与应用提供参考。
基金The National Natural Science Foundation of China (32371993)The Natural Science Research Key Project of Anhui Provincial University(2022AH040125&2023AH040135)The Key Research and Development Plan of Anhui Province (202204c06020022&2023n06020057)。
文摘This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.
文摘氨气是畜禽场景中的主要有害气体之一,针对有源传感器不适于电路有线连接受限的畜禽场景问题,该研究基于高频电磁仿真软件(high frequency structure simulator,HFSS)设计了无源传感器仿真模型,选择聚酰亚胺(polyimide,PI)作为基板材料,采用丝网印刷技术研制了基于射频识别(radio frequency identification,RFID)原理的无源氨气传感标签。通过对氨气无源检测原理的解析,选择了具有高表面积的碳纳米管作为氨气敏感材料,推导了通过测量射频接收功率变化实现无源检测的数学模型;考虑谐振频率的动态调整,无源RFID传感标签采用开口间隙可调的裂环谐振器结构,通过分析传输系数的变化对RFID传感标签的检测过程进行模拟;搭建了用于实验室和畜禽场景氨气检测的射频测试系统,围绕功率反射系数、谐振频率、传输系数开展测试分析。试验结果表明,该标签检测效率易受到到二氧化碳、温湿度因素的影响,由于人工切割、基板变形、环境干扰等因素,实物标签的谐振频率与2.4 GHz的仿真谐振频率之间存在0.05 GHz左右的偏差,传感标签的灵敏度约为15 MHz·L/mg,最大阅读距离为24 cm,相比于商用氨气传感器,该传感标签在使用寿命、响应时间方面有明显优势。研究结果为畜禽场景的氨气无源检测提供了有效的理论和实践依据。
基金The Anhui Provincial Key Laboratory of Smart Agricultural Technology and Equipment(APKLSATE2021X004)The International Cooperation Project of Ministry of Agriculture and Rural Affairs(125A0607)+2 种基金The Key Research and Development Plan of Anhui Province(201904a06020056,202104a06020012,202204c06020022)The Natural Science Major Project for Anhui Provincial University(2022AH040125)The Natural Science Foundation of Anhui Province,China(2008085MF203)。
文摘毛桃等果实的准确检测是实现机械化、智能化农艺管理的必要前提。然而,由于光照不均和严重遮挡,在果园中实现毛桃,尤其是套袋毛桃的检测一直面临着挑战。本研究基于改进YOLOv5s和多模态视觉数据提出了面向机械化采摘的毛桃多分类准确检测。具体地,构建了一个多类标签的裸桃和套袋毛桃的RGB-D数据集,包括4127组由消费级RGB-D相机获取的像素对齐的彩色、深度和红外图像。随后,通过引入方向感知和位置敏感的注意力机制,提出了改进的轻量级YOLOv5s(小深度)模型,该模型可以沿一个空间方向捕捉长距离依赖,并沿另一个空间方向保留准确的位置信息,提高毛桃检测精度。同时,通过将卷积操作分解为深度方向的卷积与宽度、高度方向的卷积,使用深度可分离卷积在保持模型检测准确性的同时减少模型的计算量、训练和推理时间。实验结果表明,使用多模态视觉数据的改进YOLOv5s模型在复杂光照和严重遮挡环境下,对裸桃和套袋毛桃的平均精度(Mean Average Precision,mAP)分别为98.6%和88.9%,比仅使用RGB图像提高了5.3%和16.5%,比YOLOv5s提高了2.8%和6.2%。在套袋毛桃检测方面,改进YOLOv5s的mAP比YOLOX-Nano、PP-YOLO-Tiny和EfficientDet-D0分别提升了16.3%、8.1%和4.5%。此外,多模态图像、改进YOLOv5s对提升自然果园中的裸桃和套袋毛桃的准确检测均有贡献,所提出的改进YOLOv5s模型在检测公开数据集中的富士苹果和猕猴桃时,也获得了优于传统方法的结果,验证了所提出的模型具有良好的泛化能力。最后,在主流移动式硬件平台上,改进后的YOLOv5s模型使用五通道多模态图像时检测速度可达每秒19幅,能够实现毛桃的实时检测。上述结果证明了改进的YOLOv5s网络和含多类标签的多模态视觉数据在实现果实自动采摘系统视觉智能方面的应用潜力。